综述与进展

过渡金属催化烯丙醇异构化反应的研究进展

  • 钟业辛 ,
  • 任凯 ,
  • 谢小敏 ,
  • 张兆国
展开
  • a 上海应用技术学院化学与环境工程学院 上海 201418;
    b 上海交通大学化学化工学院 上海 200240

收稿日期: 2015-09-24

  修回日期: 2015-10-23

  网络出版日期: 2015-11-03

基金资助

国家自然科学基金(No. 21472124)资助项目

Transition Metal Catalyzed Isomerization Reaction of Allylic Alcohols

  • Zhong Yexin ,
  • Ren Kai ,
  • Xie Xiaomin ,
  • Zhang Zhaoguo
Expand
  • a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2015-09-24

  Revised date: 2015-10-23

  Online published: 2015-11-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21472124).

摘要

羰基化合物是一类重要的有机合成中间体, 其在医药、农药、香料和化妆品领域具有重要应用. 近年来, 利用烯丙醇异构化反应快速合成一系列羰基化合物和构建新化合物的方法受到化学家的广泛关注. 由于过渡金属催化的烯丙醇异构化反应具有良好的原子经济性, 在合成方面具有独特的优势, 烯丙醇异构化反应成为金属有机化学研究的热点之一. 综述了近年来过渡金属催化的烯丙醇异构化反应的研究进展和应用.

本文引用格式

钟业辛 , 任凯 , 谢小敏 , 张兆国 . 过渡金属催化烯丙醇异构化反应的研究进展[J]. 有机化学, 2016 , 36(2) : 258 -273 . DOI: 10.6023/cjoc201509030

Abstract

Carbonyl compounds are key synthetic intermediates in the fields of medicine, pesticide, perfumes and cosmetics. In recent years, transition metal catalyzed isomerization of allylic alcohols to synthesize various carbonyl compounds has drawn much attention and been explored extensively, due to their high atomic economy and unique superiority. The recent development of the isomerization reactions of allylic alcohols catalyzed by various transition metals is summarized.

参考文献

[1] (a) Yanovskaya, L. A.; Shakhidayatov, K. Russ. Chem. Rev. 1970, 39, 859. (b) Uma, R. C.; Crévisy; Grée, R. Chem. Rev. 2003, 103, 27. (c) van der Drift, R. C.; Bouwman, E.; Drent, E. J. Organoment. Chem. 2002, 650, 1. (d) Manzini, C.; Poater, A.; Nelson, D. J.; Cavallo, L.; Nolan, S. P. Chem. Sci. 2014, 5, 180. (e) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. ACS Catal. 2012, 2, 1079.
[2] Delaby, R. Compt. Rend. 1926, 182, 140.
[3] Emerson, G. F.; Pettit, R. J. Am. Chem. Soc. 1962, 84, 4591.
[4] Strauss, J. U.; Ford, P. W. Tetrahedron Lett. 1975, 33, 2917.
[5] Branchadell, V.; Crévisy, C.; Grée, R. Chem.-Eur. J. 2004, 10, 5795.
[6] Strohmeier, W.; Weigelt, L. J. Organomet. Chem. 1975, 86, C17.
[7] Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205.
[8] Mantilli, L.; Mazet, C. Chimia 2009, 63, 35.
[9] Sato, S. H.; Matsuda, I.; Izumi, Y. Tetrahedron Lett. 1985, 26, 4229.
[10] Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958.
[11] de Bellefon, C.; Tanchoux, N.; Caravieilhes, S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed. 2000, 39, 3442.
[12] Knight, D. A.; Schull, T. L. Synth. Commun. 2003, 33, 827.
[13] Ahlsten, N.; Lundberg, H.; Martín-Mature, B. Green Chem. 2010, 12, 1628.
[14] Chin, C. S.; Lee, S. Y.; Park, J.; Kim, S. J. Am. Chem. Soc. 1988, 110, 8244.
[15] Uma, R.; Davies, M. K.; Crévisy, C.; Grée, R. Eur. J. Org. Chem. 2001, 3141.
[16] Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115, 2027.
[17] Sasson, Y.; Zoran, A.; Blum, J. J. Mol. Catal. 1979, 6, 289.
[18] Dedieu, M.; Pascal, Y.-L. J. Mol. Catal. 1980, 9, 59
[19] Krompiec, S.; Suwinski, J.; Grobelny, R. J. Mol. Catal. 1994, 89, 303.
[20] Stunnenberg, F.; Niele, F. G. M.; Drent, E. Inorg. Chim. Acta. 1994, 222, 225.
[21] Markó, I. E.; Gautier, A.; Tsukazaki, M.; Llobet, A.; Plantalech Mir, E.; Urch, C. J.; Brown, S. M. Angew. Chem., Int. Ed. 1999, 38, 1960.
[22] Alper, H.; Hachem, K. J. Org. Chem. 1980, 45, 2269.
[23] Trost, B. M.; Kuliawec, R. J. Tetrahedron Lett. 1991, 32, 3039.
[24] Bäckvall, J.-E.; Andreasson, U. Tetrahedron Lett. 1993, 34, 5459.
[25] Martín-Mature, B.; Bogar, K.; Edin, M.; Kaynak, F. B.; Bäckvall, J. E. Chem.-Eur. J. 2005, 11, 5832.
[26] Ito, M.; Kitahara, S.; Ikariya, T. J. Am. Chem. Soc. 2005, 127, 6172.
[27] Kechaou-Perrot, M.; Vendier, L.; Bastin, S.; Sotiropoulos, J.-M.; Miqueu, K.; Menéndez-Rodríguez, L.; Crochet, P.; Cadierno, V.; Igau, A. Organometallics 2014, 33, 6294
[28] (a) Cadierno, V.; Garca-Garrido, S. E.; Gimeno, J.; Varela-Álvarez, A.; Sordo, J. A. J. Am. Chem. Soc. 2006, 128, 1360. (b) García-Garrido, S. E.; Gimeno, J.; Suárez, F. J. Organometallics 2011, 30, 2893.
[29] da Costa, A. P.; Mata, J. A.; Royo, B.; Peris, E. Organometallics. 2010, 29, 1832.
[30] Azua, A.; Sanz, S.; Peris, E. Organometallics 2010, 29, 3661.
[31] Díez, J.; Gimeno, J.; Ledós, A.; Suáez, F, J.; Vicent, C. ACS Catal. 2012, 2, 2087.
[32] Kraus, M. Collect. Czech. Chem. Commun. 1972, 37, 460.
[33] Sadeghmoghaddam, E.; Gu, H.; Shon, Y.-S. ACS Catal. 2012, 2, 1838.
[34] Larionov, E.; Lin, L.-Q.; Guénée, L.; Mazet, C. J. Am. Chem. Soc. 2014, 136, 16882.
[35] Goetz, R. W.; Orchin, M. J. Am. Chem. Soc. 1963, 85, 1549.
[36] Corain, B. Gazz. Chim. Ital. 1972, 102, 687.
[37] Corain, B.; Puosi, G. J. Catal. 1973, 30, 403.
[38] Bricout, H.; Monflier, E.; Carpentier, J. F.; Mortreux, A. Eur. J. Inorg. Chem. 1998, 1998, 1739.
[39] Deeming, A. J.; Hasso, S. J. Organomet. Chem. 1976, 114, 313.
[40] Batuecas, M.; Esteruelas, M. A.; Garcia Yebra, C.; Onate, E. Organometallics 2010, 29, 2166.
[41] Tatsumi, T.; Hashimoto, K.; Tominaga, H.; Mizuta, Y.; Hata, K.; Hidai, M.; Uchida, Y. J. Organomet. Chem. 1983, 252, 105.
[42] Botteghi, C.; Giacomelli, G. Gazz. Chim. Ital. 1976, 106, 1131.
[43] Otsuka, S.; Tani, K. Synthesis 1991, 665.
[44] Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177.
[45] Mantilli, L.; Gerard, D.; Torche, S.; Besnard, C.; Mazet, C. Angew. Chem., Int. Ed. 2009, 48, 5143.
[46] Li, J. Q.; Peters, B.; Andersson, P. G. Chem.-Eur. J. 2011, 17, 11143.
[47] Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 6467.
[48] Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa, Jr, J. R. Angew. Chem., Int. Ed. 2012, 52, 2106.
[49] Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T. Angew. Chem., Int. Ed. 2013, 52, 7500.
[50] Li, H,-H.; Mazet, C. J. Am. Chem. Soc. 2015, 137, 10720.
[51] Ohkuba, K.; Ohgushi, T.; Kusaga, T.; Yoshinaga, K. Inorg. Nucl. Chem. Lett. 1977, 13, 631
[52] Kitamura, M.; Manabe, K.; Noyori, R.; Takaya, H. Tetrahedron Lett. 1987, 28, 4719
[53] Fernández-Zúmel, M. A.; Lastra-Barreina, B.; Scheele, M.; Diez, J.; Crochet, P.; Gimeno, J. Dalton Trans. 2010, 39, 7780.
[54] Corkum, E. G.; Kalapugama, S.; Hass, M. J.; Bergens, S. H. RSC Adv. 2012, 2, 3473.
[55] Ren, K.; Zhang, L.; Hu, B.; Zhao, M.-M.; Tu, Y.-H.; Xie, X.-M.; Zhang, T.-Y.; Zhang, Z.-G. ChemCatChem 2013, 5, 1317
[56] Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. Tetrahedron Lett. 2001, 42, 395.
[57] (a)Wang, M.; Li, C.-J. Tetrahedron Lett. 2002, 43, 3589. (b) Yang, X.-F.; Wang, M.; Varma, R. S.; Li, C.-J. Org. Lett. 2003, 5, 657.
[58] Cuperly, D.; Petrignet, J.; Crévisy, C.; Grée, R. Chem.-Eur. J. 2006, 12, 3261.
[59] Bartoszewicz, A.; Livendahl, M.; Martín-Mature, B. Chem.-Eur. J. 2008, 14, 10547.
[60] Mizuno, A.; Kusama, H.; Iwasawa, N. Chem.-Eur. J. 2010, 16, 8248.
[61] Bartoszewicz, A.; Martín-Matute, B. Org. Lett. 2009, 11, 1749.
[62] Ahlsten, N.; Bartoszewicz, A.; Agrawal, S.; Martín-Matute, B. Synthesis 2011, 2600.
[63] Ahlsten, N.; Bermejo, G. A.; Martín-Matute, B. Angew. Chem., Int. Ed. 2013, 52, 6273.
[64] Gómez, A, B.; Erbing, E.; Batuecas, M.; Vázquez-Romero, A.; Martín-Matute, B. Chem.-Eur. J. 2014, 20, 10703.
[65] Vazquez-Romero, A.; Bermejo, G. A.; Martín-Matute, B. ACS Catal. 2015, 5, 708
[66] Cadierno, V.; Francos, J.; Gimeno, J.; Nebra, N. Chem. Commun. 2007, 2, 536.
[67] Sahli, Z.; Sundararaju, B.; Achard, M.; Bruneau, C. Org. Lett. 2011, 13, 3964.
[68] Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. Adv. Synth. Catal. 2013, 355, 1394.
[69] Shoola, C. O.; Del Mactro, T.; Wu, R.-Q.; Sowa. Jr, J. R. Eur. J. Org. Chem. 2015, 8, 1670.
[70] Colbon, P.; Ruan, J.-R.; Purdie, M.; Mulholl, K.; Xiao, J.-L. Org. Lett. 2011, 13, 5456.
[71] Li, H.-Q.; Achard, M.; Bruneau, C.; Sortais, J.-B.; Darcel, C. RSC Adv. 2014, 4, 25892.
[72] Ren, K.; Hu, B.; Zhao, M.-M.; Tu, Y.-H.; Xie, X.-M.; Zhang, Z.-G. J. Org. Chem. 2014, 79, 2170.
[73] Nakamura, Y. S.; Ohta, T. S.; Oe, Y. H. Chem. Commun. 2015, 51, 7459.

文章导航

/