无过渡金属存在下从缺电子烯烃出发合成3位未取代的中氮茚
收稿日期: 2015-09-30
修回日期: 2015-10-26
网络出版日期: 2015-11-03
基金资助
国家自然科学基金(No. 21202058)、江苏省高校重大(No. 13KJA150001)、中国博士后基金(Nos. 2012M511645, 2013T60483)资助项目
Synthesis of 3-Unsubstituted Indolizines from Electron Deficient Alkenes under Transition Metal Free Conditions
Received date: 2015-09-30
Revised date: 2015-10-26
Online published: 2015-11-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21202058), the Department of Education of Jiangsu Province (No. 13KJA150001), the China Postdoctoral Science Foundation (Nos. 2012M511645, 2013T60483).
3位未取代的中氮茚不仅具有多种重要的生物活性, 且是重要的有机合成中间体. 报道了一种从吡啶衍生物、氯乙酸和缺电子烯烃出发, 在无过渡金属存在下合成3位未取代的中氮茚的新方法. 该反应的关键步骤为四氢中氮茚中间体在2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)存在下的氧化脱氢芳构化和脱羧反应. 该反应操作简便, 原料易得, 且在反应中无需使用任何过渡金属试剂, 具有一定的实用价值.
关键词: 中氮茚; 2,2,6,6-四甲基哌啶氮氧自由基; 1,3-偶极环加成; 无过渡金属反应; 脱氢芳构化
胡华友 , 李国栋 , 顾宁 , 吉民 . 无过渡金属存在下从缺电子烯烃出发合成3位未取代的中氮茚[J]. 有机化学, 2016 , 36(2) : 330 -335 . DOI: 10.6023/cjoc201509044
3-Unsubstituted indolizine not only exhibits a variety of important biological activities, but also is a kind of important intermediate in organic synthesis. A transition metal free method for synthesizing 3-unsubstituted indolizines from pyridines, 2-chloroacetic acid and electron deficient alkenes has been invented in this paper. The designed products were obtained via oxidative dehydrogenation and decarboxylation reactions, and 2,2,6,6-tetramthyl-1-piperidinyloxy (TEMPO) was used as an oxidant. This method featured simple procedure, easy available starting materials and transition metal free conditions.
[1] (a) Wang B.; Zhang C.-F. Chin. Wild Plant Resour. 2009, 28, 6 (in Chinese). (王冰, 张朝凤, 中国野生植物资源, 2009, 28, 6.) (b) Ewing, J.; Hughes, G. K.; Ritchie, E. W.; Taylor, C. Nature 1952, 169, 618. (c) Flitsch, W. In Comprehensive Heterocyclic Chemistry, Vol. 4, Eds.: Katritzki, A. R.; Rees, C. W., Pergamon, Oxford, 1984. (d) Swinbourne, F. T.; Hunt, J.; Klinkert, K. In Advances in Heterocyclic Chemistry, Vol. 23, Eds.: Katritzki, A. R.; Boulton, A. J., Academic Press, New York, 1978. (e) Reimann, E. Prog. Chem. Org. Nat. Prod. 2007, 88, 1. (f) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (g) Michael, J. P. Nat. Prod. Rep. 2003, 20, 458; (h) Snyder, S. A.; ElSohly, A. M.; Kontes, F. Angew. Chem., Int. Ed. 2010, 49, 9693.
[2] (a) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem. 1996, 39, 3636. (b) Ghosh, A. K.; Bilcer, G.; Schiltz, G. Synthesis 2001, 2203. (c) List, B.; Castello, C. Synlett 2001, 1687. (d) Sonnet, P.; Dallemagne, P.; Guillon, J.; Enguehard, C.; Stiebing, S.; Tanguy, J.; Bureau, R.; Rault, S.; Auvray, P.; Moslemi, S.; Sourdaine, P.; Seralini, G. E. Bioorg. Med. Chem. Lett. 2000, 8, 945. (e) Maryanoff, B. E.; Vaught, J. L.; Shank, R. P.; McComsey, D. F.; Costanzo, M. J.; Nortey, S. O. J. Med. Chem. 1990, 33, 2793. (f) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515. (g) Liao Z.-Y.; Zhang W.-N.; You L.; Guo W.; Zhang J.; Sheng C.-Q.; Yao J.-Z.; Shan X.-Y.; Wang W.-Y. Chin. J. Med. Chem. 2008, 18, 105 (in Chinese). (缪震元, 张万年, 游亮, 郭巍, 张晶, 盛春泉, 姚建忠, 车晓颖, 王文雅, 中国药物化学杂志, 2008, 18, 105.)
[3] (a) Vlahovici, A.; Andrei, M.; Druta, I. J. Lumin. 2002, 96, 279. (b) Vlahovici, A.; Druta, I.; Andrei, M.; Cotlet, M.; Dinica, R. J. Lumin. 1999, 82, 155. (c) Mitsumori, T.; Bendikov, M.; Dautel, O.; Wudl, F.; Shioya, T.; Sato, H.; Sato, Y. J. Am. Chem. Soc. 2004, 126, 16793. (d) Saeva, F. D.; Luss, H. R. J. Org. Chem. 1988, 53, 1804. (e) Sonnenschein, H.; Henrich, G.; Resch-Genger, U.; Schulz, B. Dyes Pigm. 2000, 46, 23. (f) Retaru, A. V.; Druta, L. D.; Deser, T.; Mueller, T. J. Helv. Chim. Acta 2005, 88, 1798. (g) Delattre, F.; Woisel, P.; Surpateanu, G.; Cazier, F.; Blach, P. Tetrahedron 2005, 61, 3939. (h) Mitsumori, T.; Campos, L. M.; Garcia-Garibay, M. A.; Wudl, F.; Sato, H.; Sato, Y. J. Mater. Chem. 2009, 19, 5826.
[4] Selected examples: (a) Park, C.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (b) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. (c) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. ARKIVOC 2011, 76. (d) Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. (e) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160. (f) Xia, J.; Wang, X.; You, S. J. Org. Chem. 2009, 74, 456. (g) Yang, Y.; Cheng, K.; Zhang, Y. Org. Lett. 2009, 11, 5606. (h) Yang, Y.; Chen, L.; Zhang, Z.; Zhang, Y. Org. Lett. 2011, 13, 1342. (i) Liu, B.; Qin, X.; Li, K.; Li, X.; Guo, Q.; Lan, J.; You, J. Chem. Eur. J. 2010, 16, 11836. (j) Huang, Y.; Song, F.; Wang, Z.; Xi, P.; Wu, N.; Wang, Z.; Lan, J.; You, J. Chem. Commun. 2012, 48, 2864. (k) Liu, B.; Wang, Z.; Wu, N.; Li, M.; You, J.; Lan, J. Chem. Eur. J. 2012, 18, 1599. (l) Ma, Y.; You, J.; Song, F. Chem. Eur. J. 2013, 19, 1189. (m) Zhao, B. Org. Biomol. Chem. 2012, 10, 7108. (n) Hu, H.; Liu, Y.; Zhong, H.; Zhu, Y.; Wang, C.; Ji, M. Chem. Asian J. 2012, 7, 884. (o) Hu, H.; Liu, Y.; Xu, J.; Kan, Y.; Wang, C.; Ji, M. RSC Adv. 2014, 4, 24389. (p) Hu, H.; Li, G.; Hu, W.; Liu, Y.; Wang, X.; Kan, Y.; Ji, M. Org. Lett. 2015, 17, 1114.
[5] (a) Dawood, K. M.; Ragab, E. A.; Khedr, N. A. J. Chin. Chem. Soc. (Taipei, Taiwan) 2009, 56, 1180. (b) Darwish, E. S. Molecules 2008, 13, 1066. (c) Kheder, N. A.; Darwish, E. S.; Dawood, K. M. Heterocycles 2009, 78, 177. (d) Shen, Y.-M.; Wang, B.-X.; Feng, Y.-Y.; Shen, Z.-Y.; Shen, J.; Li, C.; Hu, H.-W. Chem. J. Chin. Univ. 2006, 27, 651 (in Chinese). (沈永淼, 王炳祥, 冯玉英, 沈珠英, 沈健, 胡宏纹, 高等学校化学学报, 2006, 27, 651.) (e) Wang, B.-X.; Hu, H.-W. Chem. J. Chin. Univ. 2004, 25, 273 (in Chinese). (王炳祥, 胡宏纹, 高等学校化学学报, 2004, 25, 273.) (f) Tanaka, A.; Usui, T. Chem. Pharm. Bull. 1979, 27, 3078. (g) Tominaga, Y.; Hidaki, S.; Matsuda, Y.; Kobayashi, G.; Sakemi, K. Yakugaku Zasshi 1979, 99, 540. (h) Hu, H.; Feng, J.; Zhu, Y.; Gu, N.; Kan, Y. RSC Adv. 2012, 2, 8637. (i) Wang, C.; Hu, H.; Xu, J.; Kan, W. RSC Adv. 2015, 5, 41255.
[6] Zhang, L.; Liang, F.; Sun, L.; Hu, Y.; Hu, H. Synthesis 2000, 1733.
[7] (a) Liu, Y.; Hu, H.; Zhang, Y.; Hu, H.; Xu, J. Org. Biomol. Chem. 2010, 8, 4921. (b) Hu, H.; Shi, K.; Hou, R.; Zhang, Z.; Zhu, Y.; Zhou, J. Synthesis 2010, 4007. (c) Hu, H.; Ma, K. Crystallogr. Rep. 2010, 55, 1211.
[8] (d) Liu, Y.; Hu, H.; Su, X.; Sun, J.; Cao, C.; Shi, Y. Eur. J. Org. Chem. 2013, 2020. (e) Sun, J.; Wang, F.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 3992. (f) Li, G.; Hu, H.; Kan, Y.; Ma, K. Chin. J. Org. Chem. 2014, 34, 903 (in Chinese). (李国栋, 胡华友, 阚玉和, 马奎蓉, 有机化学, 2014, 34, 903.) (g) Wang, F.; Shen, Y.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 9556. (h) Sun, J.; Hu, H.; Wang, F.; Wu, H.; Liu, Y. RSC Adv. 2014, 4, 36498.
[9] Selctcted reviews for TEMPO as oxidant or catalyst for oxidation: (a) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037. (b) Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116. (c) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851. (d) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227. (e) Zhan, B.; Thompson, A. Tetrahedron 2004, 60, 2917. (f) Murarka, S.; Wertz, S.; Studer, A. Chimia 2012, 66, 413.
[10] Shi, F.; Zhang, Y.; Lu, Z.; Zhu, X.; Kan, W.; Wang, X.; Hu, H. Synthesis 2016, 48, 413.
[11] Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750
/
〈 |
|
〉 |