综述与进展

α-重氮膦酸酯研究进展

展开
  • a. 喀什大学化学与环境科学学院 喀什 844006;
    b. 南开大学元素有机化学研究所 天津 300071;
    c. 天津国际生物医药联合研究院 天津 300457

收稿日期: 2015-11-12

  修回日期: 2015-12-16

  网络出版日期: 2016-01-07

基金资助

天津市自然科学基金(No.15JCYBJC20700)和新疆特色药食用植物资源化学实验室开放课题(No.2015KL030)资助项目.

Research Progress of α-Diazophosphonates

Expand
  • a. College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844006;
    b. Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071 ;
    c. Tianjin International Joint Academy of Biomedicine, Tianjin 300457

Received date: 2015-11-12

  Revised date: 2015-12-16

  Online published: 2016-01-07

Supported by

Project supported by the Committee of Science and Technology of Tianjin City (No. 15JCYBJC20700) and the Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry Open Subject (No. 2015KL030).

摘要

重氮化合物作为一类重要的卡宾前体,可以在过渡金属催化下发生X—H(X=C,N,O,S,Si等)插入反应、1,2-氢迁移反应、环丙烷化反应等一系列化学转换,为构建各种药物分子、天然产物以及生物活性分子提供了有效的手段.α-重氮膦酸酯作为一类重要的重氮化合物,同样可以通过化学转化构建各种含磷功能化合物.由于有机磷化合物具有广泛的生物和药物活性,所以研究α-重氮膦酸酯的合成及相关反应性质具有重要的意义,综述了近年来α-重氮膦酸酯的研究进展和应用.

本文引用格式

苗志伟, 蔡岩, 葛海红, 付嘉欣, 木尼热·阿布都克力木 . α-重氮膦酸酯研究进展[J]. 有机化学, 2016 , 36(5) : 976 -986 . DOI: 10.6023/cjoc201511021

Abstract

Diazo compounds are the most commonly used carbene precursors. They can be dediazonized to obtain highly reactive free carbene intermediates or metal cabenoid under transition metal catalysts. Then varieties of chemical transformations can be proceeded, such as X—H (X=C, N, O, S, Si, etc.) insertions, 1,2-hydrogen migration reactions and cyclopropanations. Varieties of pharmaceuticals, natural products and other bioactive moleculars could be synthesized through these methods. As one of the most important diazo compounds α-diazophosphonates could also proceed various chemical transformations and be used to synthesize varieties of organic functional phosphorous compounds. Because organic phosphorous compounds exhibit extensive bioactivities and pharmaceutic activities, the research of α-diazophosphonates has attracted lots of attentions of scientists. The recent development of the reactions of α-diazophosphonates catalyzed by various kinds of catalysts is summarized.

参考文献

[1] (a) Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899.
(b) Palacios, F.; Alonso, C.; de los Santos, J. M. In Enantioselective Synthesis of β-Amino Acids, 2nd ed., Eds.: Juaristi, E.; Soloshonok, V. A., Wiley, New York, 2005, pp. 277~317.
[2] (a) Zollinger, H. Diazo Chemistry I and II, VCH, Weinheim, 1994.
(b) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005, pp. 376~377.
(c) Regitz, M.; Maas, G. Diazo Compounds-Properties and Synthesis, Academic Press, Orlando, 1986.
[3] (a) Wang, J.; Boyarskikh, V.; Rainier, J. D. Org. Lett. 2011, 13, 700.
(b) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. S. J. Am. Chem. Soc. 2003, 125, 4692.
(c) Lian, Y. J.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 11940.
(d) Wang, X. C.; Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402.
(e) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 133, 13314.
(f) Smith, A. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 18241.
[4] Cox, G. G.; Miller, D. J.; Moody, C. J.; Robert, E.; Sie, H. B. Tetrahedron 1994, 50, 3195.
[5] Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2003, 3798.
[6] Candeias, N. R.; Gois, P. M. P.; Afonso, C. A. M. J. Org. Chem. 2006, 71, 5489.
[7] Candeias, N. R.; Gois, P. M. P.; Veiros, L. F.; Afonso, C. A. M. J. Org. Chem. 2008, 73, 5926.
[8] Zhu, S. F.; Chen, W. Q.; Zhang, Q. Q.; Mao, H. X.; Zhou, Q. L. Synlett2011, 919.
[9] Hladeuk, I.; Chastagner, V.; Collins, S. G.; Plunkett, S. J.; Ford, A.; Debarge, S.; Maguire, A. R. Tetrahedron 2012, 68, 1894.
[10] (a) Davis, F. A.; Wu, Y. Z.; Xu, H.; Zhang, J. Y. Org. Lett. 2004, 6, 4523.
(b) Titanyuk, I. D.; Vorob'eva, D. V.; Osipov, S. N.; Beletskaya, I. P. Synlett2006, 1355.
[11] (a) Ukita, T.; Nakamura, Y. Org. Lett. 2002, 4, 2317.
(b) Haigh, D. Tetrahedron 1994, 50, 3177.
[12] (a) Xue, J. D.; Luk, H. L.; Platz, M. S. J. Am. Chem. Soc. 2011, 133, 1763.
(b) Zhu, S. F.; Xu, B.; Wang, G. P.; Zhou, Q. L. J. Am. Chem. Soc. 2012, 134, 436.
[13] Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181.
[14] (a) Salaun, J. Chem. Rev. 1989, 89, 1247.
(b) Donaldson, W. A. Tetrahedron 2001, 57, 8589.
(c) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251.
(d) Pietruszka, J. Chem. Rev. 2003, 103, 1051.
(e) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625.
(f) Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493.
(g) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46, 7364.
(h) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[15] (a) Schnaars, C.; Hansen, T. Org. Lett. 2012, 14, 2794.
(b) Schnaars, C.; Hennum, M.; Hansen, T. J. Org. Chem. 2013, 78, 7488.
[16] (a) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463.
(b) Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74, 8939.
(c) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809.
(d) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014.
(e) Campbell, M. J.; Johnson, J. S. J. Am. Chem. Soc. 2008, 131, 10370.
(f) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465.
[17] Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984.
[18] (a) Jiang, J.; Xu, H. D.; Xi, J. B.; Ren, B. Y.; Lv, F. P.; Guo, X.; Jiang, L. Q.; Zhang, Z. Y.; Hu, W. H. J. Am. Chem. Soc. 2011, 133, 10370.
(b) Xing, D.; Hu, W. H. Tetrahedron 2014, 55, 777.
(c) Zhu, Y. G.; Zhai C. W.; Yang, L. P.; Hu, W. H. Eur. J. Org. Chem. 2011, 1113.
(d) Huang, H. X.; Guo, X.; Hu, W. H. Angew. Chem., Int. Ed. 2007, 46, 1337.
(e) Jing, C. C.; Xing, D.; Qian, Y.; Shi, T. D.; Zhao, Y.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 9289.
(f) Zhang, D.; Qiu, H.; Jiang, L. Q.; Lv, F. P.; Ma, C. Q.; Hu, W. H. Angew. Chem., Int. Ed. 2013, 52, 13356.
(g) Zhou, C. Y.; Wang, J. C.; Wei, J. H.; Xu, Z. J.; Guo, Z.; Low, K. H.; Che, C. M. Angew. Chem., Int. Ed. 2012, 51, 11376.
[19] Zhou, Y. J.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. B. J. Org. Chem. 2015, 80, 6109.
[20] (a) Taber, D. F.; Herr, R. J.; Pack, S. K. J. Org. Chem. 1996, 61, 2908.
(b) Zhang, Z. H.; Wang, J. B. Tetrahedron 2008, 64, 6577.
(c) Jiang, N.; Ma, Z. H.; Qu, Z. H.; Xing, X. Y.; Xie, L. F.; Wang. J. B. J. Org. Chem. 2003, 68, 893.
(d) Zhou, L.; Liu, Y. Z.; Zhang, Y.; Wang, J. B. Chem. Commun. 2011, 47, 3622.
(e) Xu, F.; Zhang, S. W.; Wu, X. N.; Liu, Y.; Shi, W. F.; Wang, J. B. Org. Lett. 2006, 8, 3207.
(f) Xiao, F. P.; Wang, J. B. J. Org. Chem. 2006, 71, 5789.
(g) Xu, F.; Shi, W. F.; Wang, J. B. J. Org. Chem. 2005, 70, 4191.
(h) Jiang, N; Qu, Z. H.; Wang, J. B. Org. Lett. 2001, 3, 2989.
[21] Cai, Y.; Ge, H. H.; Yu, C. B.; Sun, W. Z.; Zhan, J. C.; Miao, Z. W. RSC Adv. 2014, 4, 1492.
[22] Ge, H. H.; Liu, S.; Cai, Y.; Sun, Y. C.; Miao, Z. W. Synthesis 2016, 48, 448.
[23] Cai, Y.; Lyu, H. R.; Yu, C. B.; Miao, Z. W. Adv. Synth. Catal. 2014, 356, 596.
[24] (a) Patil, U. D. Synlett 2009, 17, 2880.
(b) Gong, D. H.; Zhang, L.; Yuan, C. Y. Synth. Commun. 2004, 34, 3259.
(c) Bartnik, R.; Lesniak, S.; Wasiak, P. Tetrahedron Lett. 2004, 45, 7301.
(d) Mukund, M. D.; Pramanik, A.; Chaturvediab, K.; Rastogi, N. Chem. Commun. 2014, 50, 12896.
(e) Muruganantham, R.; Namboothiri, I. J. Org. Chem. 2010, 75, 2197.
(f) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2007, 9, 1125.
[25] Verma, D.; Mobin, S.; Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764.
[26] Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J. J. Angew. Chem., Int. Ed. 2010, 49, 3196.
[27] Cai, Y.; Lu, Y. C.; Yu, C. B.; Lyu H. R., Miao, Z. W. Org. Biomol. Chem. 2013, 11, 5491.
[28] Cai, Y.; Ge, H. H.; Sun, W. Z.; Miao, Z. W. Synthesis2015, 47, 1669.
[29] Hu, C. F.; Cai, Y.; Munira, A.; Miao, Z. W. Chin. J. Org. Chem. 2015, 35, 2135 (in Chinese).
(胡辰飞, 蔡岩, 木尼热·阿布都克力木, 苗志伟, 有机化学, 2015, 35, 2135.)

文章导航

/