综述与进展

烯醇酯的不对称催化氢化研究进展

  • 王志惠 ,
  • 张振锋 ,
  • 刘燕刚 ,
  • 张万斌
展开
  • a 上海交通大学药学院 上海 200240;
    b 上海交通大学化学化工学院 上海 200240

收稿日期: 2015-12-07

  修回日期: 2016-01-06

  网络出版日期: 2016-01-15

基金资助

国家自然科学基金(No. 21572131)和上海市科学技术委员会(No. 14XD1402300)资助项目.

Development of the Asymmetric Hydrogenation of Enol Esters

  • Wang Zhihui ,
  • Zhang Zhenfeng ,
  • Liu Yangang ,
  • Zhang Wanbin
Expand
  • a School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240;
    b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2015-12-07

  Revised date: 2016-01-06

  Online published: 2016-01-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572131) and the Science and Technology Commission of Shanghai Municipality (No. 14XD1402300).

摘要

手性醇具有重要而广泛的应用价值, 其不对称制备一直是有机合成领域的研究重点和热点. 其中, 不对称催化尤其是不对称催化氢化, 以其高效、绿色和经济等优势正逐渐在手性醇的工业化制备中显示出巨大的潜能. 首次对烯醇酯不对称催化氢化合成手性醇领域进行了综述, 全面地介绍了各种结构类型和取代形式烯醇酯的不对称催化氢化研究现状, 系统地分析了不同手性配体的过渡金属配合物催化剂的优势与不足, 进而从新底物、新配体以及新金属等方面对该领域的发展方向进行了探讨.

本文引用格式

王志惠 , 张振锋 , 刘燕刚 , 张万斌 . 烯醇酯的不对称催化氢化研究进展[J]. 有机化学, 2016 , 36(3) : 447 -459 . DOI: 10.6023/cjoc201512009

Abstract

Chiral alcohols are an important class of compounds and possess a broad array of applications, thus their asymmetric preparation is an important area of research in the field of organic synthesis. Amongst methodologies for the preparation of such compounds, catalytic asymmetric hydrogenation has gained widespread interest due to its efficiency, environmentally friendliness and economic advantages, and is gradually becoming a technology with great potential for the industrial preparation of chiral alcohols. This review provides the first overview for the catalytic asymmetric hydrogenation of enol esters for the synthesis of chiral alcohols. A comprehensive and up-to-date introduction are given for a number of different substrates. A thorough analysis is provided concerning the advantages and disadvantages of different chiral ligands and their transition-metal complexes. Finally, a brief discussion relating to developments and potential areas of further research concerning new substrates, new ligands and new catalytic metals, is presented.

参考文献

[1] (a) de Vries, J. G.; Elsevier, C. J. Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, Germany, 2007.
(b) Ma, Y.; Zhang, Y. J.; Zhang, W. Chin. J. Org. Chem. 2007, 27, 289 (in Chinese). (马元辉, 张勇健, 张万斌, 有机化学, 2007, 27, 289.)
(c) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale, 2nd ed., Wiley-VCH, Weinheim, Germany, 2010.
(d) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427 (in Chinese). (谢建华, 周其林, 化学学报, 2012, 70, 1427.)
(e) Etayo, P.; Vidal-Ferran, A. Chem. Soc. Rev. 2013, 42, 728.
(f) Wang, Y.; Zhang, Z.; Zhang, W. Chin. J. Org. Chem. 2015, 35, 528 (in Chinese). (王英杰, 张振锋, 张万斌, 有机化学, 2015, 35, 528.)
[2] (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
(b) Klingler, F. D. Acc. Chem. Res. 2007, 40, 1367.
[3] Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1978, 100, 5491.
[4] Koenig, K. E.; Bachman, G. L.; Vineyard, B. D. J. Org. Chem. 1980, 45, 2362.
[5] Brown, J. M.; Murrer, B. A. J. Chem. Soc., Perkin Trans. 2 1982, 489.
[6] Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518.
[7] Lotz, M.; Ireland, T.; Perea, J. J. A.; Knochel, P. Tetrahedron: Asymmetry 1999, 10, 1839.
[8] (a) Ireland, T.; Tappe, K.; Grossheimann, G.; Knochel, P. Chem. Eur. J. 2002, 8, 843.
(b) Lotz, M.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 4708.
[9] Gavrilov, K. N.; Benetsky, E. B.; Boyko, V. E.; Rastorguev, E. A.; Davankov, V. A.; Schäffner, B.; Börner, A. Chirality 2010, 22, 844.
[10] Schmidt, U.; Langner, J.; Kirschbaum, B.; Braun, C. Synthesis 1994, 1138.
[11] Lüttenberg, S.; Ta, T. D.; von der Heyden, J.; Scherkenberk, J. Eur. J. Org. Chem. 2013, 1824.
[12] (a) Stephan, M.; Šterk, D.; Mohar, B. Adv. Synth. Catal. 2009, 351, 2779.
(b) Zupan?i?, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 1296.
(c) Zupan?i?, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 3022.
[13] Burk, M. J.; Kalberg, C. S.; Pizzano, A. J. Am. Chem. Soc. 1998, 120, 4345.
[14] Han, X.; Jiang, X.-J.; Civiello, R. L.; Degnan, A. P.; Chaturvedula, P. V.; Macor, J. E.; Dubowchik, G. M. J. Org. Chem. 2009, 74, 3993.
[15] Liu, Y.; Sandoval, C. A.; Yamaguchi, Y.; Zhang, X.; Wang, Z.; Kato, K.; Ding, K. J. Am. Chem. Soc. 2006, 128, 14212.
[16] (a) Dong, C.; Wang, Y.; Zhu, Y. Z. Bioorg. Med. Chem. 2009, 17, 3499.
(b) Pan, L.-L.; Wang, J.; Jia, Y.-L.; Zheng, H.-M.; Wang, Y.; Zhu, Y.-Z. Int. J. Mol. Sci. 2015, 16, 628.
[17] Wang, Q.; Huang, W.; Yuan, H.; Cai, Q.; Chen, L.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 16120.
[18] Boaz, N. W. Tetrahedron Lett. 1998, 39, 5505.
[19] Li, W.; Zhang, Z.; Xiao, D.; Zhang, X. J. Org. Chem. 2000, 65, 3489.
[20] Tang, W.; Liu, D.; Zhang, X. Org. Lett. 2003, 5, 205.
[21] Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646.
[22] Zhang, X.; Huang, K.; Hou, G.; Cao, B.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 6421.
[23] Pullmann, T.; Engendahl, B.; Zhang, Z.; Hölscher, M.; Zanotti-Gerosa, A.; Dyke, A.; Franciò, G.; Leitner, W. Chem. Eur. J. 2010, 16, 7517.
[24] Knorad, T. M.; Schmitz, P.; Leitner, W.; Franciò, G. Chem. Eur. J. 2013, 19, 13299.
[25] Robert, T.; Abiri, Z.; Sandee, A. J.; Schmalz, H.-G.; Reek, J. N. H. Tetrahedron: Asymmetry 2010, 21, 2671.
[26] (a) Etayo, P.; Núñez-Rico, J. L.; Fernández-Pérez, H.; Vidal-Ferran, A. Chem. Eur. J. 2011, 17, 13978.
(b) Etayo, P.; Núñez-Rico, J. L.; Vidal-Ferran, A. Organometallics 2011, 30, 6718.
(c) Núñez-Rico, J. L.; Etayo, P.; Fernández-Pérez, H.; Vidal-Ferran, A. Adv. Synth. Catal. 2012, 354, 3025.
[27] (a) Fernández-Pérez, H.; Benet-Buchholz, J.; Vidal-Ferran, A. Org. Lett. 2013, 15, 3634.
(b) Fernández-Pérez, H.; Benet-Buchholz, J.; Vidal-Ferran, A. Chem. Eur. J. 2014, 20, 15375.
(c). Lao, J. R. Benet-Buchholz, J.; Vidal-Ferran, A. Organometallics 2014, 33, 2960.
[28] (a) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. Chem. Eur. J. 2013, 19, 16209.
(b) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. ACS. Catal. 2014, 4, 4398.
[29] Reetz, M. T.; Goossen, L. J.; Meiswinkel, A.; Paetzold, J.; Jensen, J. F. Org. Lett. 2003, 5, 3099.
[30] Mamone, P.; Grünberg, M. F.; Fromm, A.; Khan, B. A.; Gooβen, L. J. Org. Lett. 2012, 14, 3716.
[31] Alegre, S.; Alberico, E.; Pàmies, O.; Diéguez, M. Tetrahedron: Asymmetry 2014, 25, 258.
[32] Jiang, X.-B.; van den Berg, M.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Tetrahedron: Asymmetry 2004, 15, 2223.
[33] Panella, L.; Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. Org. Lett. 2005, 7, 4177.
[34] Enthaler, S.; Erre, G.; Junge, K.; Michalik, D.; Spannenberg, A.; Marras, F.; Gladiali, S.; Beller, M. Tetrahedron: Asymmetry 2007, 18, 1288.
[35] Liu, Y.; Wang, Z.; Ding, K. Tetrahedron 2012, 68, 7581.
[36] Schmitz, C.; Leiter, W.; Franciò, G. Eur. J. Org. Chem. 2015, 2889.
[37] Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357.
[38] Kuroki, Y.; Asada, D.; Sakamaki, Y.; Iseki, K. Tetrahedron Lett. 2000, 41, 4603.
[39] Wu, S.; Wang, W.; Tang, W.; Lin, M.; Zhang, X. Org. Lett. 2002, 4, 4495.
[40] Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T. T.-L.; Ji, J.-X.; Guo, R.; Pai, C.-C.; Zhou, Z.; Li, X.; Fan, Q.-H.; Chan, A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5815.
[41] Le Gendre, P.; Braun, T.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1996, 61, 8453.
[42] Fehr, M. J.; Consiglio, G.; Scalone, M.; Schmid, R. J. Org. Chem. 1999, 64, 5768.
[43] Broger, E. A.; Burkart, W.; Hennig, M.; Scalone, M.; Schmid, R. Tetrahedron: Asymmetry 1998, 9, 4043.
[44] Jiang, Q; Xiao, D; Zhang, Z; Cao, P; Zhang, X. Angew. Chem., Int. Ed. 1999, 38, 516.
[45] Pignataro, L.; Bovio, C.; Civera, M.; Piarulli, U.; Gennari, C. Chem. Eur. J. 2012, 18, 10368.
[46] Burk, M. J.; Stammers, T. A.; Straub, J. A. Org. Lett. 1999, 1, 387.
[47] Liu, H.; Zhou, Y.-G.; Yu, Z.-K.; Xiao, W.-J.; Liu, S.-H.; He, H.-W. Tetrahedron 2006, 60, 11207.
[48] (a) Gridnev, I. D.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 123, 4631.
(b). Gridnev, I. D.; Higashi, N.; Imamoto, T. Organometallics 2001, 20, 4542.
(c) Gridnev, I. D.; Yasutake, M.; Imamoto, T.; Beletskaya, I. P. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5385.
(d) Imamoto, T.; Yashio, K.; Crépy, K. V. L.; Katagiri, K.; Takahashi, H.; Kouchi, M.; Gridnev, I. D. Organometallics 2006, 25, 908.
(e). Gridnev, I. D.; Imamoto, T.; Hoge, G.; Kouchi, M.; Takahashi, H. J. Am. Chem. Soc. 2008, 130, 2560.
(f). Tamura, K.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Imamoto, T. Org. Lett. 2010, 12, 4400.
[49] (a) Rubio, M.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
(b) Rubio, M.; Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Eur. J. 2007, 13, 1821.
[50] (a) Wassenaar, J.; Reek, J. N. H. J. Org. Chem. 2009, 74, 8403.
(b) Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A. L.; Reek, J. N. H. Chem. Eur. J. 2010, 16, 6509.
[51] (a) Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z. Angew. Chem., Int. Ed. 2007, 46, 7810.
(b) Qiu, M.; Hu, X.-P.; Huang, J.-D.; Wang, D.-Y.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. Adv. Synth. Catal. 2008, 350, 2683.
(c) Wang, D.-Y.; Huang, J.-D.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 2011.
[52] Fernández-Pérez, H.; Pericàs, M. A.; Vidal-Ferran, A. Adv. Synth. Catal. 2008, 350, 1984.
[53] (a) Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Eur. J. 2008, 14, 9856.
(b) Chávez, M. Á.; Vargas, S.; Suárez, A.; Álvarez, E.; Pizzano, A. Adv. Synth. Catal. 2011, 353, 2775.
[54] Konno, T.; Shimizu, K.; Ogata, K.; Fukuzawa, S.-I. J. Org. Chem. 2012, 77, 3318.
[55] Sun, T.; Zhang, X. Adv. Synth. Catal. 2012, 354, 3211.

文章导航

/