综述与进展

木质素氧化降解研究进展

  • 张海峰 ,
  • 杨军艳 ,
  • 吴建新 ,
  • 毛海舫 ,
  • 孙小玲
展开
  • 上海应用技术大学化学与环境工程学院上海 201418

收稿日期: 2015-11-25

  修回日期: 2016-01-28

  网络出版日期: 2016-02-01

基金资助

上海市大学生创新创业重点(No.PE2014032)、上海市科委地方院校能力建设(No.15120503700)资助项目.

Research Progress of Lignin Oxidative Degradation

  • Zhang Haifeng ,
  • Yang Junyan ,
  • Wu Jianxin ,
  • Mao Haifang ,
  • Sun Xiaoling
Expand
  • School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 20141

Received date: 2015-11-25

  Revised date: 2016-01-28

  Online published: 2016-02-01

Supported by

Project supported by the Key Projects of Innovation and Entrepreneurship of College Students in Shanghai (No. PE2014032), and the Capacity-building Projects in Shanghai Local Universities (No. 15120503700).

摘要

木质素是当今世界上含量第二丰富的可再生高聚物. 氧化降解是木质素价值增值过程中一种非常有前景的方法, 它能提供高度官能化的单体和低聚物产品作为其他价值增值过程的起始原料, 为代替化石燃料在化工和制药行业中的应用提供了一种可能. 主要对木质素及其模型化合物的氧化改性方法进行了综述, 包括生物催化、仿生催化、有机金属催化、电化学催化氧化及其他几种催化氧化法, 并简单讨论了氧化降解过程的反应机理, 为今后木质素的氧化价值增值研究提供一定的参考.

本文引用格式

张海峰 , 杨军艳 , 吴建新 , 毛海舫 , 孙小玲 . 木质素氧化降解研究进展[J]. 有机化学, 2016 , 36(6) : 1266 -1286 . DOI: 10.6023/cjoc201511049

Abstract

Lignin is the second most abundant natural polymer. Oxidative degradation of lignin polymer is a very promising approach in lignin valorisation, which offers the possibility to provide highly functional monomer and oligomer products in the chemical and pharmaceutical industries instead of fossil fuels used as the starting materials of the process of other valorisation. This paper focuses on the oxidative modification methods of lignin and its model compounds, including biocatalysis, biomimetic catalysis, organometallic catalysis, electrochemistry catalytic oxidation and several other oxidation methods, and a brief discussion of the reaction mechanism in the process of oxidative degradation.

参考文献

[1] Dale, B. E.; Ong, R. G. Biotechnol. Prog. 2012, 28, 893.
[2] Stern, D. I. Ann. N. Y. Acad. Sci. 2011, 1219, 26.
[3] Bentley, R. W. Energy Policy 2002, 30, 189.
[4] Chang, C. C. Appl. Energy 2010, 87, 3533.
[5] Tverberg, G. E. Energy 2012, 37, 27.
[6] Zhang, N.; Lior, N.; Jin, H. Energy 2011, 36, 3639.
[7] Srirangan, K.; Akawi, L.; Moo-Young, M. Appl. Energy 2012, 100, 172.
[8] Lu, Y.; Wei, X.-Y.; Zong, Z.-M. Prog. Chem. 2013, 25, 838 (in Chinese). (路瑶,魏贤勇,宗志敏,化学进展, 2013, 25, 838.)
[9] Jiang,T.-D. Lignin, Chemical Industry Press, Beijing, 2008, p. 30 (in Chinese). (蒋挺大, 木质素, 化学工业出版社, 北京, 2008.)
[10] Crestini, C.; Crucianelli, M.; Orlandi, M. Catal. Today 2010, 156, 8 .
[11] Mu, Y.-B.; Wang, C.-P.; Zhao, L.-W.; Chu, F.-X. Chem. Ind. For. Prod. 2009, 29, 38 (in Chinese). (穆有炳, 王春鹏, 赵临五, 储富祥, 林产化学与工业, 2009, 29, 38.)
[12] El Mansouri, N. E.; Yuan, Q. L.; Huang, F. R. BioResources 2011, 6, 2492.
[13] Yue, X. P.; Chen, F. G.; Zhou, X. S. BioResources 2011, 6, 2022.
[14] Mohamad Ibrahim, M. N.; Ahmed-Haras, M. R.; Sipaut, C. S. Carbohydr. Polym. 2010, 80, 1102.
[15] Zhang, X. H.; Zhang, Q.; Wang, T. J.; Ma L. L. Bioresource Technol. 2013, 134, 73.
[16] Lange, H.; Decina, S.; Crestini, C. Eur. Poly. J. 2013, 49, 1151.
[17] Sun, R.; Lawther, J. M.; Banks, W. B. Ind. Crops Prod. 1995, 4, 241.
[18] Shi, L. L.; Yu, H. B.; Dong, T. B.; Kong W. Process Biochem. 2014, 49, 1097.
[19] Galli, C.; Gentili, P.; Acunzo, F. New J. Chem. 2006, 30, 583.
[20] Crestini, C.; D'Annibale, A.; Sermanni, G. G. Bioorg. Med. Chem. 2000, 8, 433.
[21] Crestini, C.; Saladino, R.; Tagliatesta, P. Bioorg. Med. Chem. 1999, 7, 1897.
[22] Zhu, W.; Ford, W. T. J. Mol. Catal. 1993, 78, 367.
[23] Gouvêa, C. A. K.; Wypych, F.; Moraes, S. G. Chemosphere 2000, 40, 427.
[24] Xie, Y. -M.; Hu, Z. -J.; Wu, H. Chem. Ind. For. Prod. 2004, 24, 1 (in Chinese). (谢益民,胡周建, 伍红, 林产化学与工业, 2004, 24, 1.)
[25] Biannic, B.; Bozell, J. Org. Lett. 2013, 15, 2730.
[26] Sedai, B.; Diaz-Urrutia, C.; Baker, R. T. ACS Catal. 2013, 3, 3111.
[27] Crestini, C.; Pro, P.; Neri, V. Bioorg. Med. Chem. 2005, 13, 2569.
[28] Vladimir, A. G.; Craig, L. H.; Ira, A. W. Oxidative Delignification Chemistry, Montereal, 2001, P. 297.
[29] Zhu, H. B.; Wang, L.; Chen, Y. M. RSC Adv. 2014, 4, 29917.
[30] Cui X. M.; Liang J. D.; Wang D. Q. J. Chem. Technol. Biotechnol. 2015, 90, 747.
[31] Rahimi, A.; Azarpira, A.; Kim H. J. Am. Chem. Soc. 2013, 135, 6415.
[32] Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2013, 31, 1.
[33] Nie, S.; Liu, X.; Wu, Z. Chem. Eng. J. 2014, 241, 410.
[34] Ferm, R.; Kringsta, K. P.; Cowling, E. B. Sven. Papperstidn. 1972, 75, 859.
[35] Wariishi, H.; Akileswaran, L.; Gold, M. H. Biochemistry 1988, 27, 5365.
[36] Wariishi, H.; Valli, K.; Gold, M. H. J. Biol. Chem. 1992, 267, 23688.
[37] Wariishi, H.; Valli, K.; Gold, M. H. Biochemistry 1989, 28, 6017.
[38] Tuor, U.; Wariishi, H.; Schoemaker, H. E.; Gold, M. H. Biochemistry 1992, 31, 4986.
[39] D'Annibale, A.; Crestini, C.; Mattia, E. D.; Sermanni G. G. J. Biotechnol. 1996, 48, 231.
[40] Saliu, F.; Tolppa, E.; Zoia, L.; Orlandi, M. Tetrahedron Lett. 2011, 52, 3856.
[41] Claudia ,C.; Raffaella, P.; Raffaele, S. Appl. Catal. A-Gen. 2010, 372, 115.
[42] Lundquist, K.; Kristersson, P. Biochem. J. 1985, 229, 277.
[43] Call, H. P.; Mücke, I. J. Biotechnol. 1997, 53, 163.
[44] Kirk, T. K.; Chang, H. M.; Butterworth-Heinemann, B. Massachusetts. 1990, 666, 99.
[45] Higuchi, T. Wood Sci. Technol. 1990, 24, 23.
[46] Shleev, S.; Christenson, A.; Serezhenkov, V. Biochem. J. 2005, 385, 745.
[47] Messerschmidt, A.; Huber, R. Eur. J. Biochem. 1990, 187, 341.
[48] Majcherczyk, A.; Johannes, C.; Hüttermann, A. Appl. Microbiol. Biot. 1999, 51, 267.
[49] Crestini, C.; Jurasek, L.; Argyropoulos, D. S. Chem.-Eur. J. 2003, 9, 5371.
[50] Rodríguez, C. S.; Osma, J. F.; Saravia, V. Appl. Catal. A-Gen. 2007, 329, 156.
[51] Krajewska, B. Enzyme Microb. Technol. 2004, 35, 126.
[52] Cho, Y. K.; Bailey, J. E. Biotechnol. Bioeng. 1979, 21, 461.
[53] Abadulla, E.; Tzanov, T.; Costa, S. Appl. Environ. Microb. 2000, 66, 3357.
[54] Ryan, S.; Schnitzhofer, W.; Tzanov, T. Enzyme Microb. Technol. 2003, 33, 766.
[55] Kandelbauer, A.; Maute, O.; Kessler, R. W. Biotechnol. Bioeng. 2004, 87, 552.
[56] Osma, J. F.; Toca-Herrera, J. L.; Rodríguez-Couto, S. Bioresource Technol. 2010, 101, 8509.
[57] Held, C.; Kandelbauer, A.; Schroeder, M. Environ. Chem. Lett. 2005, 3, 74.
[58] Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210, 831.
[59] Peyratout, C. S.; Dähne, L. Angew. Chem., Int. Ed. 2004, 43, 3762.
[60] Rochefort, D.; Kouisni, L.; Gendron, K. J. Electroanal. Chem. 2008, 617, 53.
[61] Hébert, M.; Rochefort, D. ECS Trans. 2008, 16, 85.
[62] Di, S. M.; Maturo, C.; De, A. E. Catal. Today 2003, 79, 333.
[63] Crestini, C.; Perazzini, R.; Saladino, R. Appl. Catal. A-Gen. 2010, 372, 115.
[64] Guazzaroni, M.; Crestini, C.; Saladino, R. Bioorg. Med. Chem. 2012, 20, 157.
[65] Perazzini, R.; Saladino, R.; Guazzaroni, M. Bioorg. Med. Chem. 2011, 19, 440.
[66] Crestini, C.; Melone, F.; Saladino, R. Bioorg. Med. Chem. 2011, 19, 5071.
[67] Tien, M.; Kirk, T. K. Science 1983, 221, 661.
[68] Song, R.; Sorokin, A.; Bernadou, J. J. Org. Chem. 1997, 62, 673.
[69] Venkatasubbaiah, K.; Zhu, X.; Kays, E. ACS Catal. 2011, 1, 489.
[70] Baker, J. H. F. M. S. Thesis, Eastern Kentucky University, Kentucky, 2012.
[71] Jiang, Q.; Sheng, W.; Guo, X. J. Mol. Catal. A-Chem. 2013, 373, 121.
[72] Crestini, C.; Saladino, R.; Tagliatesta, P. Bioorg. Med. Chem. 1999, 7, 1897.
[73] Crestini, C.; Pastorini, A.; Tagliatesta, P. Eur. J. Inorg. Chem. 2004, 2004, 4477.
[74] Zucca, P.; Sollai, F.; Garau, A. J. Mol. Catal. A 2009, 306, 89.
[75] Kumar, A.; Jain, N.; Chauhan, S. M. S. Synlett 2007, 411.
[76] Crestini, C.; Pastorini, A.; Tagliatesta, P. J. Mol. Catal. A 2004, 208, 195.
[77] Zucca, P.; Mocci, G.; Rescigno, A. J. Mol. Catal. A 2007, 278, 220.
[78] Barros, V. P.; Faria, A. L.; MacLeod, T. C. O. Int. Biodeterior Biodegrad. 2008, 61, 337.
[79] Pattou, D.; Labat, G.; Defrance, S. B. Soc. Chim. Fr. 1994, 131, 78.
[80] Shimada, M.; Habe, T.; Higuchi, T. Holzforschung 1987, 41, 277.
[81] Cui, F.; Dolphin, D. Bioorg. Med. Chem. Lett. 1995, 3, 471.
[82] Barbat, A.; Gloaguen, V.; Sol, V. Bioresource Technol. 2010, 101, 6538.
[83] Meunier, B.; Sorokin, A. Acc. Chem. Res. 1997, 30, 470.
[84] Kawai, S.; Ohashi, H. Phys. Technol. Wood 1993, 47, 97.
[85] Barton, D. H. R.; Delanghe, N. C.; Patin, H. Tetrahedron 1997, 53, 16017.
[86] Walker, C. C.; Dinus, R. J.; McDonough, T. J. Holzforschung 1999, 53,181.
[87] Watanabe, T.; Koller, K.; Messner, K. J. Biotechnol. 1998, 62, 221.
[88] Mirkhani, V.; Moghadam, M.; Tangestaninejad, S. Catal. Commun. 2008, 9, 219.
[89] Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2011, 12, 993.
[90] Gupta, K. C.; Sutar, A. K. J. Mol. Catal. A 2007, 272, 64.
[91] Cedeno, D.; Bozell, J. J. Tetrahedron Lett. 2012, 53, 2380. .
[92] Kogami, Y.; Nakajima, T. Ikeno, T.; Yamada, T. Synthesis 2004, 1947.
[93] Park, J.; Lang, K.; Abboud, K. A. J. Am. Chem. Soc. 2008, 130, 16484.
[94] Guo, X. F.; Kim, Y. S.; Kim, G. J. Top. Catal. 2009, 52, 153.
[95] Bozell, J.; Elder, T. J. Green Chem. 2014, 16, 3635.
[96] Zakzeski, J.; Jongerius, A. L.; Weckhuysen, B. M. Green Chem. 2010, 12, 1225.
[97] Watanabe, E.; Kaiho, A.; Kusama, H. J. Am. Chem. Soc. 2013, 135, 11744.
[98] Sonar, S.; Ambrose, K.; Hendsbee, A. D. Can. J. Chem. 2011, 90, 60.
[99] Zhou, X. -F. J. Appl. Polym. Sci. 2014, 131, 9594.
[100] Bernini, R.; Mincione, E.; Cortese, M. Tetrahedron Lett. 2001, 42, 5401.
[101] Kühn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149.
[102] Zhu, Z.; Espenson, J. H. J. Org. Chem. 1995, 60, 7728.
[103] Jacob, J.; Espenson, J. H. Inorg. Chim. Acta 1998, 270, 55.
[104] Herrmann, W. A.; Fischer, R. W.; Scherer, W. Angew. Chem., Int. Ed. 1993, 32, 1157.
[105] Adam, W.; Herrmann, W. A.; Saha-Möller, C. R. J. Mol. Catal. A 1995, 97, 15.
[106] Amorati, R.; Pedulli, G. F.; Valgimigli, L.; Attanasi, O. A.; Filippone, P.; Fiorucci, C.; Saladino, R. J. Chem. Soc., Perkin Trans. 2 2001, 2142.
[107] Saladino, R.; Gualandi, G.; Farina, A. Curr. Med. Chem. 2008, 15, 1500.
[108] Saladino, R.; Neri, V.; Mincione, E. Marini,S.; Coletta, M.; Fiorucci, C.; Filippone, P. J. Chem. Soc., Perkin Trans. 1 2000, 581.
[109] Saladino, R.; Mincione, E.; Attanasi, O. A. Pure Appl. Chem. 2003, 75, 265.
[110] Saladino, R.; Neri, V.; Mincione, E. Tetrahedron 2002, 58, 8493.
[111] Crestini, C.; Caponi, M. C. Argyropoulos, D. S. Bioorg. Med. Chem. 2006, 14, 5292.
[112] Saladino, R.; Neri, V.; Pelliccia, A. R. J. Org. Chem. 2002, 67, 1323.
[113] Bujanovic, B.; Ralph, S.; Reiner, R. Mater 2010, 3, 1888.
[114] Lv, H.; Geletii, Y. V.; Zhao, C. Chem. Soc. Rev. 2012, 41, 7572.
[115] Gaspar, A.; Evtuguin, D. V.; Pascoal, N. C. Appl. Catal. A 2003, 239, 157.
[116] Zhao, Y.; Xu, Q.; Pan, T. Appl. Catal. A 2013, 467, 504.
[117] Yokoyama, T.; Chang, H.; Reiner, R. S. Holzforschung 2004, 58, 116.
[118] Voitl, T.; Rudolf, . R. P. V. ChemSusChem 2008, 1, 763.
[119] Weinstock, I. A.; Barbuzzi, E. M. G.; Wemple, M. W. Nature 2001, 414, 191.
[120] Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357.
[121] Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
[122] Ansari, I. A.; Gree, R. Org. Lett. 2002, 4, 1507.
[123] Dijksman, A.; Marino-Gonzalez, A.; Mairata, I. P. A. J. Am. Chem. Soc. 2001, 123, 6826.
[124] Zhao, M.; Li, J.; Mano, E. J. Am. Chem. Soc. 1999, 64, 2564.
[125] Karimi, B.; Farhangi, E. Chem.-Eur. J. 2011, 17, 6056.
[126] Nooy, A. E. J. D.; Besemer, A. C.; Bekkum, H. V. Carbohydr. Res. 1995, 269, 89.
[127] Kato, Y.; Matsuo, R.; Isogai, A. Carbohydr. Polym. 2003, 51, 69.
[128] Jiang, B.; Drouet, E.; Milas, M. Carbohydr. Res. 2000, 327, 455.
[129] Fraschini, C.; Vignon, M. R. Carbohydr. Res. 2000, 328, 585.
[130] Saito, T.; Nishiyama, Y. ; Putaux, J. L. Biomacromolecules 2006, 7, 1687.
[131] Saito, T.; Isogai, A. Biomacromolecules 2004, 5, 1983.
[132] Sedai, B.; Diaz-Urrutia, C.; Baker, R. T. C. ACS Catal. 2011, 1, 794.
[133] Sedai, B.; Baker, R. T. Adv. Synth. Catal. 2014, 356, 3563.
[134] Omori, S.; Dence, C. W. Wood Sci. Technol. 1981, 15, 67.
[135] Sawaki, Y.; Foote, C. S. J. Am. Chem. Soc. 1983, 105, 5035.
[136] Lanzalunga, O.; Bietti, M. J. Photochem. Photobiol. B 2000, 56, 85.
[137] Kovalenko, E. I.; Popova, O. V.; Aleksandrov, A. A. Russ. J. Electrochem. 2000, 36, 706.
[138] Parpot, P.; Bettencourt, A. P.; Carvalho, A. M. J. Appl. Electrochem. 2000, 30, 727.
[139] Pelegrini, R.; Reyes, J.; Duran, N. J. Appl. Electrochem. 2000, 30, 953.
[140] Lu, Z.; Tu, B.; Chen, F. J. Wood Chem. Technol. 2003, 23, 261.
[141] Tolba, R.; Tian, M.; Wen, J. J. Electroanal. Chem. 2010, 649, 9.
[142] Tian, M.; Wen, J.; MacDonald, D. Electrochem. Commun. 2010, 12, 527.
[143] Pan, K.; Tian, M. ; Jiang, Z. H. Electrochim. Acta. 2012, 60, 147.
[144] Brandt, A.; Hallett, J. P.; Leak, D. J. Green Chem. 2010, 12, 672.
[145] Liu, S.; Shi, Z.; Li, L. RSC Adv. 2013, 3, 5789.
[146] Reichert, E.; Wintringer, R.; Volmer, D. A. Phys. Chem. Chem. Phys. 2012, 14, 5214.
[147] Shao, D.; Liang, J.; Cui, X. Chem. Eng. J. 2014, 244, 288.
[148] Cui, X. M, Liang, J. D, Wang, D. Q. J. Chem. Technol. Biotechnol. 2015, 90, 747.
[149] Voort, P. V. D.; Vercaemst, C.; Schaubroeck, D. Phys. Chem. Chem. Phys. 2008, 10, 347.
[150] Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000, 12, 1403.
[151] Itoh, A.; Kodama, T.; Masaki, Y. Chem. Pharm. Bull. 2006, 54, 1571.
[152] Badamali, S. K.; Clark, J. H.; Breeden, S. W. Catal. Commun. 2008, 9, 2168.
[153] Beck, J. S.; Vartuli, J. C.; Roth, W. J. J. Am. Chem. Soc. 1992, 114, 10834.
[154] Badamali, S. K.; Luque, R.; Clark, J. H. Catal. Commun. 2009, 10, 1010.
[155] Sun, Y.; Zhang, J.-P.; Yang, G. Spectrosc. Spect. Anal. 2007, 27, 1551 (in Chinese). (孙勇, 张金平,杨刚, 光谱学与光谱分析, 2007, 27, 1551.)
[156] Hoareau, W.; Trindade, W. G.; Siegmund, B. Polym. Degrad. Stabil. 2004, 86, 567.
[157] Nie, S.; Liu, X.; Wu, Z. Chem. Eng. J. 2014, 241, 410.
[158] Svenson, D. R.; Kadla, J. F.; Chang, H. Ind. Eng. Chem. Res. 2002, 41, 5927.
[159] Das, L.; Kolar, P.; Sharma-Shivappa, R. Biofuels 2012, 3, 155.
[160] Kobayakawa, K.; Sato, Y.; Nakamura, S. B. Chem. Soc. Jpn. 1989, 62, 3433.
[161] Gouvêa, C. A. K.; Wypych, F.; Moraes, S. G. Chemosphere 2000, 40, 427.
[162] Machado, A. E. H. Furuyama, A. M.; Falone, S. Z. Chemosphere 2000, 40, 115.
[163] Kansal, S. K.; Singh, M. Sud, D. J. Hazard. Mater. 2008, 153, 412.
[164] Ma, Y. S.; Chang, C. N.; Chiang, Y. P. Chemosphere 2008, 71, 998.
[165] Portjanskaja, E.; Stepanova, K.; Klauson, D. Catal. Today 2009, 144, 26.
[166] Rangel, R.; Mercado, G. J.; Bartolo-Pérez, P. Sci. Adv. Mater. 2012, 4, 573.
[167] Li, R.-X. Green Solventthe Synthesis and Application of Ionic Liquids, Chemical Industry Press, Beijing, 2004 (in Chinese). (李汝雄, 绿色溶剂——离子液体的合成与应用, 化学工业出版社北京, 2004.)
[168] Sheldon, R. A.; Lau, R. M.; Sorgeddrager, M. J.; Rantwijk, F. V.; Seddon, K. R. Green Chem. 2002, 4, 147.
[169] Sang, H. L.; Thomas, V. D.; Robert, J. L.; Jonathan, S. D. Biotechnol. Bioeng. 2009, 102, 1368.
[170] Fort, D. A.; Remsing, R. C.; Swatloski ,R. P.; Rogers, R. D. Green Chem. 2007, 9, 63.
[171] Michael, Z.; Daniela B.; Matthias F.; Jochen, B.; Antje, C. S. Bioresour. Technol. 2009, 100, 2580.
[172] Sun, N.; Rahman, M.; Qin,Y.; Mirela, L. M.; Robin, D. R. Green Chem. 2009, 11, 646.
[173] Pu, Y. Q.; Nan, J.; Arthur, J. R. Wood Chem. Technol. 2007, 27, 23.
[174] Tan, S. S.Y.; MacFarlane, D. R.; Edye, L. A.; Pringle, J. M. Green Chem. 2009, 11, 339.
[175] Jürgen, V.; Tina, E.; Claudia, H.; Ulrich, S. S. Green Chem. 2009, 11, 417.
[176] Magorzata, E. Z.; Bogel-Lukasik, E. Energy Fuels 2010, 24, 737.
[177] Nan, J.; Arthur, J. R. J. Org. Chem. 2007, 72, 7030.
[178] Stärk, K.; Taccardi, N.; Bösmann, A. ChemSusChem 2010, 3, 719.
[179] Sun, X. L.; Yang, J.; Zhang, H.; Shen, Y.; Bi, Y.; Miao, H.; Mao, H. CN 105037116A 2015 [Chem. Abstr. 2015, 163, 702069].

文章导航

/