非贵金属催化的烯烃和炔烃的氢胺化反应研究进展
Research Progress in Non-noble Metals Catalyzed Hydroamination of Alkyenes and Alkynes
Received date: 2015-12-08
Revised date: 2016-01-07
Online published: 2016-02-18
王剑 , 崔冬梅 . 非贵金属催化的烯烃和炔烃的氢胺化反应研究进展[J]. 有机化学, 2016 , 36(6) : 1163 -1183 . DOI: 10.6023/cjoc201512010
Organic compounds that contain nitrogen are very important intermediates in pharmaceutical and chemical industry. Hydroamination is the reaction that can form C—N bond with high atom economy. The research progress in non-noble metals catalyzed hydroamination of alkenes and alkynes from the perspective of reaction mechanism is categorized and summarized.
Key words: hydroamination; atom economy; transition metal; alkaline metal; alkaline earth metal
[1] (a) Brossi, A. In The Alkaloids: Chemistry and Pharmacology, Vol. 43, Ed.: Cordell, G. A., Academic Press, San Diego, 1993, pp. 119~183.
(b) Clement, B. A.; Goff, C. M.; Forbes, T. D. A. Phytochemistry 1998, 49, 1377.
(c) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In the Alkaloids: Chemistry and Pharmacology, Vol. 43, Eds.: Cordell, G. A., Academic Press, San Diego, 1993, p. 185.
(d) Glisan King, A.; Meinwald, J. Chem. Rev. 1996, 96, 1105.
(e) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
[2] (a) Brunet, J. J.; Neibecker D. I. In Catalytic Heterofunctiona- lization from Hydroamination to Hydrozirconation, Eds.: Togni, A.; Grutzmacher, H., VCH, Weinheim, Germany, 2001, pp. 91~141.
(b) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.
(c) Hermanns, N.; Dahmen, S.; Bolm, C.; Bräse, S. Angew. Chem., Int. Ed. 2002, 41, 3692.
(d) Lawrence, S. A. In Amines: Synthesis Properties, and Applications, Cambridge University Press, New York, 2004.
[3] (a) Haynes, L. W.; Cook, A. G. In Synthesis, Structure and Reactions, Ed.: Cook, A. G., Marcel Dekker, New York, 1988.
(b) Layer, R. W. Chem. Rev. 1963, 63, 489.
(c) Nie, H.; Zhou, H.; Li, X.; Li, Y.; Wang, J. Chin. J. Org. Chem. 2013, 33, 2412 (in Chinese). (聂红芬, 周宏勇, 李小娜, 李云庆, 王家喜, 有机化学, 2013, 33, 2412.)
(d) Wang, X.; Porco, J. A. J. Org. Chem. 2001, 66, 8215.
(e) Xinwei, H.; Jianli, L. Chin. J. Org. Chem. 2013, 33, 1960 (in Chinese). (黄新炜, 刘建利, 有机化学, 2013, 33, 1960.)
[4] (a) Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C. Chem. Eur. J. 2004, 10, 494.
(b) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109.
(c) Martínez, C.; Muñiz, K. Angew. Chem., Int. Ed. 2015, 54, 8287.
(d) Venkat Reddy, C. R.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2005, 7, 4427.
(e) Weng, B.; Li, J. H. Appl. Organomet. Chem. 2009, 23, 375.
[5] (a) Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 2185.
(b) Hansson, C.; Wickberg, B. J. Org. Chem. 1973, 38, 3074.
(c) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397.
[6] (a) Flitsch, W.; Schindler, S. R. Synthesis 1975, 1975, 685.
(b) Murphy, P. J.; Brennan, J. Chem. Soc. Rev. 1988, 17, 1.
[7] (a) Chen, M.; Yuan, G.; Yang, S. Chin. J. Org. Chem. 2000, 20, 357 (in Chinese). (陈敏东, 袁光谱, 杨世琰, 有机化学, 2000, 20, 357.)
(b) Cossío, F. P.; Alonso, C.; Lecea, B.; Ayerbe, M.; Rubiales, G.; Palacios, F. J. Org. Chem. 2006, 71, 2839.
(c) Nitta, M.; Kobayashi, T. Chem. Lett. 1986, 15, 463.
(d) Qu, F.; Hu, R.-F.; Gao, L.; Wu, J.; Cheng, X.-H.; Wang, S.; He, P. Synthesis 2015, 47, 3701.
(e) Xie, H.; Yuan, D.; Ding, M.-W. J. Org. Chem. 2012, 77, 2954.
[8] (a) Baron, M.; Metay, E.; Lemaire, M.; Popowycz, F. Green Chem. 2013, 15, 1006.
(b) Cantillo, D.; Moghaddam, M. M.; Kappe, C. O. J. Org. Chem. 2013, 78, 4530.
(c) Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. J. Org. Chem. 2015, 80, 7281.
(d) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2015, 137, 8888.
(e) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941.
[9] (a) Borah, A. J.; Phukan, P. Tetrahedron Lett. 2012, 53, 3035.
(b) Liu, P.; Wang, Z.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1994.
(c) Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012, 14, 946.
(d) Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399.
(e) Zagulyaeva, A. A.; Banek, C. T.; Yusubov, M. S.; Zhdankin, V. V. Org. Lett. 2010, 12, 4644.
[10] (a) Fu, B.; Li, N.; Liang, X.-Y.; Dong, Y.-H.; Wang, D.-Q. Chin. J. Org. Chem. 2007, 27, 1 (in Chinese). (傅滨, 李楠, 梁晓梅, 董燕红, 王道全, 有机化学, 2007, 27, 1.)
(b) Ding, Z.; Tan, Q.; Liu, B.; Zhang, K.; Xua, B. Acta Chim. Sinica 2015, 73, 1302 (in Chinese). (丁正伟, 谭启涛, 刘秉新, 张可, 许斌, 化学学报, 2015, 73, 1302.)
(c) Flögel, O.; Dash, J.; Brüdgam, I.; Hartl, H.; Reißig, H. U. Chem. Eur. J. 2004, 10, 4283.
(d) Hodgson, D. M.; Kaka, N. S. Angew. Chem. 2008, 120, 10106.
(e) Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134, 14670.
[11] (a) Imase, H.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 3563.
(b) Lefranc, J.; Tetlow, D. J.; Donnard, M.; Minassi, A.; Gálvez, E.; Clayden, J. Org. Lett. 2011, 13, 296.
(c) Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Org. Lett. 2007, 9, 4223.
[12] McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323.
[13] Knölker, H.-J.; Agarwal, S. Tetrahedron Lett. 2005, 46, 1173.
[14] Chernyak, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743.
[15] Trinh, T. T. H.; Nguyen, K. H.; de Aguiar Amaral, P.; Gouault, N. Beilstein J. Org. Chem. 2013, 9, 2042.
[16] Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460.
[17] Bates, R. W.; Dewey, M. R. Org. Lett. 2009, 11, 3706.
[18] Wang, C.; Sperry, J. Org. Lett. 2011, 13, 6444.
[19] Toske, S. G.; Jensen, P. R.; Kauffman, C. A.; Fenical, W. Tetrahedron 1998, 54, 13459.
[20] Takabe, K.; Katagiri, T.; Tanaka, J.; Fujita, T.; Watanabe, S.; Suga, K. Org. Synth. 1989, 67, 44.
[21] Chen, X.; Huang, S.; Lu, T.; Zhao, X.; Jiang, B. Chin. J. Org. Chem. 2009, 29, 884 (in Chinese). (陈旭敏, 黄山, 陆涛, 赵小龙, 姜标, 有机化学, 2009, 29, 884.)
[22] (a) Kozlov, N.; Dinaburskaya, B.; Rubina, T. J. Gen. Chem. USSR 1936, 1341.
(b) Loritsch, J. A.; Vogt, R. R. J. Am. Chem. Soc. 1939, 61, 1462.
[23] (a) Gasc, M. B.; Lattes, A.; Perie, J. J. Tetrahedron 1983, 39, 703.
(b) Larock, R. C. Angew. Chem., Int. Ed. 1978, 17, 27.
(c) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239.
(d) Stipa, P.; Finet, J. P.; Le Moigne, F.; Tordo, P. J. Org. Chem. 1993, 58, 4465.
(e) Tokuda, M.; Yamada, Y.; Suginome, H. Chem. Lett. 1988, 17, 2.
[24] (a) Benson, S. W. In Thermodynamical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., John Wiley and Sons, New York, 1976.
(b) Brunet, J.-J.; Neibecker, D.; Niedercorn, F. J. Mol. Catal. 1989, 49, 235.
(c) Johns, A. M.; Sakai, N.; Ridder, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9306.
(d) Roundhill, D. M. Chem. Rev. 1992, 92, 1.
(e) Steinborn, D.; Taube, R. Z. Chem. 1986, 26, 349.
[25] (a) Taube, R. In Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, Eds.: Cornils, B.; Herrmann, W. A., VCH, Weinheim, 1996.
(b) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2002, 124, 14542.
[26] (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(b) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098.
[27] Howk, B. W.; Little, E. L.; Scott, S. L.; Whitman, G. M. J. Am. Chem. Soc. 1954, 76, 1899.
[28] (a) Stroh, R.; Ebersberger, J.; Haberland, H.; Hahn, W. Angew. Chem. 1957, 69, 124.
(b) Wollensak, J.; Closson, R. D. Org. Synth. 1963, 43, 45.
[29] Closson, R. D.; Napolitano, J. P.; Ecke, G. G.; Kolka, A. J. J. Org. Chem. 1957, 22, 646.
[30] Steinborn, D.; Thies, B.; Wagner, I.; Taube, R. Z. Chem. 1989, 29, 333.
[31] Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57, 1917.
[32] Narita, T.; Imai, N.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 1242.
[33] Imai, N.; Narita, T.; Tsuruta, T. Tetrahedron Lett. 1971, 12, 3517.
[34] Narita, T.; Yamaguchi, T.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 3825.
[35] Kouklovsky, C.; Pouilhès, A.; Baltaze, J.-P. Synlett 2013, 24, 1805.
[36] Zhang, W.; Werness, J. B.; Tang, W. Org. Lett. 2008, 10, 2023.
[37] Rousseau, G.; Lebeuf, R.; Schenk, K.; Castet, F.; Robert, F.; Landais, Y. Chem. Eur. J. 2014, 20, 14771.
[38] (a) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275.
(b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
[39] (a) Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45, 2741.
(b) Harder, S. Angew. Chem., Int. Ed. 2004, 43, 2714.
[40] Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012, 51, 4943.
[41] Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 13445.
[42] Brinkmann, C.; Barrett, A. G.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2012, 134, 2193.
[43] Reid, S.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Org. Lett. 2014, 16, 6016.
[44] Glock, C.; Gorls, H.; Westerhausen, M. Chem. Commun. 2012, 48, 7094.
[45] Younis, F. M.; Krieck, S.; Görls, H.; Westerhausen, M. Organometallics 2015, 34, 3577.
[46] Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042.
[47] Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670.
[48] (a) Datta, S.; Gamer, M. T.; Roesky, P. W. Organometallics 2008, 27, 1207.
(b) Datta, S.; Roesky, P. W.; Blechert, S. Organometallics 2007, 26, 4392.
[49] Barrett, A. G. M.; Brinkmann, C.; Crimmin, M. R.; Hill, M. S.; Hunt, P.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 12906.
[50] Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 2784.
[51] Romero, N.; Rosca, S. C.; Sarazin, Y.; Carpentier, J. F.; Vendier, L.; Mallet-Ladeira, S.; Dinoi, C.; Etienne, M. Chem. Eur. J. 2015, 21, 4115.
[52] Buch, F.; Harder, S. Z. Naturforsch. B 2008, 63, 4115.
[53] Wixey, J. S.; Ward, B. D. Chem. Commun. 2011, 47, 5449.
[54] Nixon, T. D.; Ward, B. D. Chem. Commun. 2012, 48, 11790.
[55] Zhang, X.; Emge, T. J.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2012, 51, 394.
[56] (a) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871.
(b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949.
[57] (a) Seyam, A. M.; Stubbert, B. D.; Jensen, T. R.; O’Donnell Iii, J. J.; Stern, C. L.; Marks, T. J. Inorg. Chim. Acta 2004, 357, 4029.
(b) Tian, S.; Arredondo, V. M.; Stern, C. L.; Marks, T. J. Organometallics 1999, 18, 2568.
[58] Xiao, Y.; Wang, Q.; Zhao, B.; Yao, Y. Chin. J. Org. Chem. 2015, 35, 1598 (in Chinese). (肖洋, 王千宇, 赵蓓, 姚英明, 有机化学, 2015, 35, 1598.)
[59] Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584.
[60] Kissel, A. A.; Mahrova, T. V.; Lyubov, D. M.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A.; Del Rosal, I.; Maron, L. Dalton Trans. 2015, 44, 12137.
[61] (a) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem. Eur. J. 2003, 9, 4796.
(b) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748.
(c) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23, 2601.
[62] (a) Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108.
(b) Gagne, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 1716.
[63] (a) Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439.
(b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295.
[64] Inagaki, S.; Ikeda, H. Tetrahedron Lett. 2015, 56, 5587.
[65] (a) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707.
(b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757.
[66] Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998, 17, 1452.
[67] Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Chem. Eur. J. 2001, 7, 3078.
[68] Bambirra, S.; Tsurugi, H.; van Leusen, D.; Hessen, B. Dalton Trans. 2006, 1157.
[69] Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; H. Teuben, J. Chem. Commun. 2001, 637.
[70] Lauterwasser, F.; Hayes, P. G.; Bräse, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234.
[71] Huynh, K.; Anderson, B. K.; Livinghouse, T. Tetrahedron Lett. 2015, 56, 3658.
[72] Otero, A.; Lara-Sánchez, A.; Castro-Osma, J. A.; Márquez- Segovia, I.; Alonso-Moreno, C.; Fernández-Baeza, J.; Sánchez- Barba, L. F.; Rodríguez, A. M. New J. Chem. 2015, 39, 7672.
[73] (a) Pohlki, F.; Doye, S. Angew. Chem., Int. Ed. 2001, 40, 2305.
(b) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed. 2001, 40, 4632.
(c) Tobisch, S. Chem. Eur. J. 2007, 13, 4884.
[74] Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923.
[75] Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894.
[76] (a) Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959.
(b) Bexrud, J. A.; Schafer, L. L. Dalton Trans. 2010, 39, 361.
(c) Kim, H.; Lee, P. H.; Livinghouse, T. Chem. Commun. 2005, 5205.
(d) Müller, C.; Loos, C.; Schulenberg, N.; Doye, S. Eur. J. Org. Chem. 2006, 2006, 2499.
(e) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2009, 29, 24.
[77] (a) Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 13405.
(b) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. Chem. Commun. 2004, 704.
[78] Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961.
[79] (a) Heutling, A.; Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059.
(b) Heutling, A.; Severin, R.; Doye, S. Synthesis 2005, 1200.
(c) Pohlki, F.; Heutling, A.; Bytschkov, I.; Hotopp, T.; Doye, S. Synlett 2002, 799.
[80] (a) Tillack, A.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 2541.
(b) Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, 10, 2409.
(c) Tillack, A.; Khedkar, V.; Beller, M. Tetrahedron Lett. 2004, 45, 8875.
[81] (a) Buil, M. L.; Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2007, 26, 554.
(b) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2005, 24, 5084.
(c) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2006, 25, 1448.
[82] (a) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967.
(b) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2002, 21, 5148.
[83] Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
[84] Ackermann, L. Organometallics 2003, 22, 4367.
[85] Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne, P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116.
[86] Tonks, I. A.; Meier, J. C.; Bercaw, J. E. Organometallics 2013, 32, 3451.
[87] Yim, J. C.; Bexrud, J. A.; Ayinla, R. O.; Leitch, D. C.; Schafer, L. L. J. Org. Chem. 2014, 79, 2015.
[88] Brahms, C.; Tholen, P.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2013, 7583.
[89] Dorfler, J.; Preuss, T.; Brahms, C.; Scheuer, D.; Doye, S. Dalton Trans 2015, 44, 12149.
[90] Lühning, L. H.; Brahms, C.; Nimoth, J. P.; Schmidtmann, M.; Doye, S. Z. Anorg. Allg. Chem. 2015, 641, 2071.
[91] Liu, J.; Cao, Y.; Li, L.; Pei, H.; Chen, Y.; Hu, J.; Qin, Y.; Li, Y.; Li, W.; Liu, W. RSC Adv. 2015, 5, 10318.
[92] Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708.
[93] Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956.
[94] Tobisch, S. Dalton Trans. 2006, 4277.
[95] Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 18246.
[96] Leitch, D. C.; Turner, C. S.; Schafer, L. L. Angew. Chem., Int. Ed. 2010, 49, 6382.
[97] Leitch, D. C.; Platel, R. H.; Schafer, L. L. J. Am. Chem. Soc. 2011, 133, 15453.
[98] Allan, L. E. N.; Clarkson, G. J.; Fox, D. J.; Gott, A. L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308.
[99] Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422.
[100] Wang, X.; Chen, Z.; Sun, X. -L.; Tang, Y.; Xie, Z. Org. Lett. 2011, 13, 4758.
[101] Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Chem. Commun. 2015, 51, 7633.
[102] Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Dalton Trans. 2015, 44, 20352.
[103] Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004, 23, 1845.
[104] (a) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519.
(b) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2006, 8, 2445.
[105] Anderson, L. L.; Schmidt, J. A.; Arnold, J.; Bergman, R. G. Organometallics 2006, 25, 3394.
[106] Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731.
[107] (a) Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Organometallics 2007, 26, 1729.
(b) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354.
[108] (a) Manna, K.; Everett, W. C.; Schoendorff, G.; Ellern, A.; Windus, T. L.; Sadow, A. D. J. Am. Chem. Soc. 2013, 135, 7235.
(b) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865.
[109] Zhou, X.; Wei, B.; Sun, X.-L.; Tang, Y.; Xie, Z. Chem. Commun. 2015, 51, 5751.
[110] Zhai, H.; Borzenko, A.; Lau, Y. Y.; Ahn, S. H.; Schafer, L. L. Angew. Chem., Int. Ed. 2012, 51, 12219.
[111] Manna, K.; Eedugurala, N.; Sadow, A. D. J. Am. Chem. Soc. 2015, 137, 425.
[112] Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080.
[113] (a) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451.
(b) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750.
[114] (a) Akermark, B.; Almemark, M.; Jutandm, A. Acta Chem. Scand. B 1982, 36.
(b) Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937.
(c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
[115] (a) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451.
(b) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371.
[116] Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. 1997, 36, 2225.
[117] (a) Bauer, E. B.; Andavan, G. S.; Hollis, T. K.; Rubio, R. J.; Cho, J.; Kuchenbeiser, G. R.; Helgert, T. R.; Letko, C. S.; Tham, F. S. Org. Lett. 2008, 10, 1175.
(b) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738.
(c) Dorta, R.; Egli, P.; Zürcher, F.; Togni, A. J. Am. Chem. Soc. 1997, 119, 10857.
(d) Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383.
[118] Ohmiya, H.; Moriya, T.; Sawamura, M. Org. Lett. 2009, 11, 2145.
[119] Pouy, M. J.; Delp, S. A.; Uddin, J.; Ramdeen, V. M.; Cochrane, N. A.; Fortman, G. C.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M.; Myers, W. H. ACS Catal. 2012, 2, 2182.
[120] Bahri, J.; Blieck, R.; Jamoussi, B.; Taillefer, M.; Monnier, F. Chem. Commun. 2015, 51, 11210.
[121] Biyikal, M.; Löhnwitz, K.; Meyer, N.; Dochnahl, M.; Roesky, P. W.; Blechert, S. Eur. J. Inorg. Chem. 2010, 2010, 1070.
[122] Sarish, S. P.; Schaffner, D.; Sun, Y.; Thiel, W. R. Chem. Commun. 2013, 49, 9672.
[123] Bernoud, E.; Oulie, P.; Guillot, R.; Mellah, M.; Hannedouche, J. Angew. Chem., Int. Ed. 2014, 53, 4930.
[124] (a) Ambuehl, J.; Pregosin, P. S.; Venanzi, L. M.; Consiglio, G.; Bachechi, F.; Zambonelli, L. J. Organomet. Chem. 1979, 181, 255.
(b) Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744.
[125] (a) Müller, T. E.; Berger, M.; Grosche, M.; Herdtweck, E.; Schmidtchen, F. P. Organometallics 2001, 20, 4384.
(b) Seul, J. M.; Park, S. J. Chem. Soc., Dalton Trans. 2002, 1153.
[126] (a) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
(b) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 2006, 4555.
[127] Cheng, X.; Hii, K. K. M. Tetrahedron 2001, 57, 5445.
[128] Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366.
[129] (a) Karshtedt, D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640.
(b) Li, X.; Chianese, A. R.; Vogel, T.; Crabtree, R. H. Org. Lett. 2005, 7, 5437.
(c) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098.
(d) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798.
[130] (a) Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Müller, T.; Thiel, O. Chem. Eur. J. 1999, 5, 1306.
(b) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166.
[131] (a) Su, R. Q.; Müller, T. E. Tetrahedron 2001, 57, 6027.
(b) Su, R. Q.; Nguyen, V. N.; Müller, T. E. Top. Catal. 2003, 22, 23.
[132] Müller, T. E.; Lercher, J. A.; Van Nhu, N. AIChE J. 2003, 49, 214.
[133] Müller, T. E.; Pleier, A.-K. J. Chem. Soc., Dalton Trans. 1999, 583.
[134] Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K. Organometallics 2000, 19, 170.
[135] Penzien, J.; Haeßner, C.; Jentys, A.; Köhler, K.; Müller, T. E.; Lercher, J. A. J. Catal. 2004, 221, 302.
[136] Shanbhag, G. V.; Kumbar, S. M.; Joseph, T.; Halligudi, S. B. Tetrahedron Lett. 2006, 47, 141.
[137] Neff, V.; Muller, T. E.; Lercher, J. A. Chem. Commun. 2002, 906.
[138] Shanbhag, G. V.; Halligudi, S. J. Mol. Catal. A: Chem. 2004, 222, 223.
[139] Peeters, A.; Valvekens, P.; Ameloot, R.; Sankar, G.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2013, 3, 597.
[140] Lühl, A.; Nayek, H. P.; Blechert, S.; Roesky, P. W. Chem. Commun. 2011, 47, 8280.
[141] (a) Lühl, A.; Hartenstein, L.; Blechert, S.; Roesky, P. W. Organometallics 2012, 31, 7109.
(b) Pissarek, J.-W.; Schlesiger, D.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2009, 351, 2081.
[142] Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.
[143] Liu, G.-Q.; Li, Y.-M. Tetrahedron Lett. 2011, 52, 7168.
[144] Tsuchimoto, T.; Aoki, K.; Wagatsuma, T.; Suzuki, Y. Eur. J. Org. Chem. 2008, 2008, 4035.
[145] Pews-Davtyan, A.; Beller, M. Chem. Commun. 2011, 47, 2152.
[146] (a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377.
(b) Patil, N. T.; Singh, V. Chem. Commun. 2011, 47, 11116.
[147] Zille, M.; Stolle, A.; Wild, A.; Schubert, U. S. RSC Adv. 2014, 4, 13126.
[148] Chilleck, M. A.; Hartenstein, L.; Braun, T.; Roesky, P. W.; Braun, B. Chem. Eur. J. 2015, 21, 2594.
[149] Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669.
[150] Reyes-Sa'nchez, A. N.; Cañavera-Buelvas, F.; Barrios- Francisco, R.; Cifuentes-Vaca, O. L.; Flores-Alamo, M.; Garci'a, J. J. Organometallics 2011, 30, 3340.
[151] Reyes-Sanchez, A.; Garcia-Ventura, I.; Garcia, J. J. Dalton. Trans. 2014, 43, 1762.
[152] Manan, R. S.; Kilaru, P.; Zhao, P. J. Am. Chem. Soc. 2015, 137, 6136.
[153] Ackermann, L.; Song, W.; Sandmann, R. J. Organomet. Chem. 2011, 696, 195.
/
〈 |
|
〉 |