研究论文

烷氧基桥接的苯并菲和苝单亚胺二酯二元化合物的合成及性质研究

  • 孔翔飞 ,
  • 刘鹏 ,
  • 王桂霞 ,
  • 夏励婷 ,
  • 戴胜平 ,
  • 苏剑 ,
  • 廖培海 ,
  • 刘峥 ,
  • 穆林平
展开
  • a 桂林理工大学化学与生物工程学院桂林 541004;
    b 山西师范大学物理与信息工程学院临汾 041004

收稿日期: 2015-12-30

  修回日期: 2016-01-22

  网络出版日期: 2016-02-24

基金资助

国家自然科学基金(Nos.11364013,21266006)、广西教育厅(No.KY2015YB129)和桂林理工大学博士启动基金资助项目.

Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads

  • Kong Xiangfei ,
  • Liu Peng ,
  • Wang Guixia ,
  • Xia Liting ,
  • Dai Shengping ,
  • Su Jian ,
  • Liao Peihai ,
  • Liu Zheng ,
  • Mu Linping
Expand
  • aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004;
    b School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004

Received date: 2015-12-30

  Revised date: 2016-01-22

  Online published: 2016-02-24

Supported by

Project supported by the National Natural Science Fondation of China (Nos. 11364013, 21266006), the Education Department of Guangxi Province (No. KY2015YB129) and the Startup Foundation for Doctor of Guilin University of Technology.

摘要

柱状相盘状液晶材料具有较高的载流子迁移率, 而给体-桥-受体型超分子具有光诱导分子内电子转移的性质. 为了使材料兼有这两种性质, 我们合成了柔性烷氧基桥连接的、含有苯并菲单元和苝单亚胺二酯单元的二元化合物. 其分子结构通过1H NMR, IR, MS和元素分析进行表征. 此外, 循环伏安法测试结果表明二元化合物中两个结构单元的能级分别与对应单体的能级保持一致. 稀溶液中的紫外可见吸收光谱及荧光光谱结果表明, 光照时在给体单元和受体单元间发生有效的能量转移和电子转移. 示差扫描热分析仪及偏光显微镜的测试结果表明当桥链碳原子数为10和12的二元化合物在加热时可形成稳定的液晶柱状相. 由此可知, 该类化合物具有作为新型有机光伏材料的前景.

本文引用格式

孔翔飞 , 刘鹏 , 王桂霞 , 夏励婷 , 戴胜平 , 苏剑 , 廖培海 , 刘峥 , 穆林平 . 烷氧基桥接的苯并菲和苝单亚胺二酯二元化合物的合成及性质研究[J]. 有机化学, 2016 , 36(6) : 1325 -1334 . DOI: 10.6023/cjoc201512048

Abstract

Columnar discotic liquid crystals have high charge carrier mobility, and donor-bridge-accepter-based supra-mole- cular compounds have photoinduced intramolecular electron transfer behavior. In order to make the organic materials possess these two performances, dyads composed of hexaalkoxy triphenylene unit and perylene monoimide diesters unit were prepared in this work. In the dyads, the flexible alkoxys were used as bridges, the triphenylene units having six electron-donating alkoxy tails acted as electron donors, and the perylene monoimide diesters units having four electron-withdrawing carbonyls acted as electron acceptors. Their structures were established by proton nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), mass spectrometry (MS) and elemental analysis (EA). The photophysical properties were characterized by means of UV-Vis absorption spectroscopy and fluorescence spectroscopy. The results showed that in dilute dichloromethane solutions the absorbance strength of these dyads was the sum of that of their monomers, hexakishexyloxy triphenylene (HAT6) and N-hexyl-perylene monoimide dihexyl esters (PMD6), and not interfered by the length of flexible bridges. When excited at 475 nm, the strength of the fluorescence of the dyads decreased when the spacers shortened from dodecyloxy, decyloxy, hexyloxy to ethoxy groups. Actually, when the spacer was ethoxy group, the fluorescence of the dyad was almost quenched completely. This is attributed to the photoinduced electron transfer properties (PET) between the donor and acceptor units. When excited at 280 nm, the strength of the fluorescence of the triphenylene units also became weaker when the spacers shortened from dodecyloxy to ethanyloxy. At the same time, the strength of the fluorescence of the perylene units became stronger. This is attributed to energy transfer from the triphenylene unit to the perylene unit. In addition, their liquid crystalline properties have been studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that when the spacers were decyloxy and dodecyloxy the dyads possessed columnar liquid crystal behavior in the heating circle, while in the cooling circle only the dyad bearing the dodecyloxy spacer showed mesophase; and dyads bridged by the hexyloxy or ethanyloxy did not show liquid crystal properties in the heating or cooling circle. Electronic energy levels of triphenylene and perylene units of the dyads measured by cyclic voltammetry (CV) are almost the same as that of HAT6 and PMD6, respectively. In conclusion, these dyads have the potential application in the organic photovoltaic field.

参考文献

[1] Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471.
[2] Bushby, R. J.; Lozman, O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343.
[3] Kumar, S. Liq. Cryst. 2004, 31, 1037.
[4] Kumar, S. Liq. Cryst. 2013, 40, 1769.
[5] Tschierske, C. Angew. Chem., Int. Ed. 2013, 52, 8828.
[6] Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832.
[7] Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569.
[8] Haverkate, L. A.; Zbiri, M.; Johnson, M. R.; Deme, B. J. Phys Chem. B. 2011, 115, 13809.
[9] Craats, A. M.; Warman, J. M.; Fechtenk, A.; Brand, J. D.; Harbison, M. A.; Mullen, K. Adv. Mater 1999, 11, 1469.
[10] Seguy, I.; Destruel, P.; Bock, H. Synth. Met. 2000, 111112, 15.
[11] Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
[12] Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684.
[13] Cammidge, A. N.; Bushby, R. J. Handbook of Liquid Crystals, Vol. 2B, Eds.: Demus, D.; Goodby, J. W.; Gray, G. W.; Spiess, H.-W.; Vill, V., Wiley-VCH, Weinheim, 1998, pp. 693~833.
[14] Mao, H.; He, Z.; Zhang, C. Chin. J. Org. Chem. 2006, 26, 413 (in Chinese). (毛华香, 何志群, 张春秀, 有机化学, 2006, 26, 413.)
[15] Li, J.; He, Z.; Xu, M.; Kong, X.; Zhang, C. Chin. J. Org. Chem. 2010, 30, 590 (in Chinese). (李娟娟, 何志群, 许敏, 孔翔飞, 张春秀, 有机化学, 2010, 30, 590.)
[16] Ma, X.; Li, Y.; Qiu, X.; Zhao, K.; Yang, Y.; Wang, C. J. Mater. Chem. 2009, 19, 1490.
[17] Zhu, Y.; Tian, H.; Wu, H.; Hao, D.; Zhou, Y.; Shen, Z.; Zou, D.; Sun, P.; Fan, X.; Zhou, Q. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 295.
[18] Chen, H.; Zhao, K.; Wang, L.; Hu, P.; Wang, B. Soft Mater. 2011, 9, 359.
[19] Han, B.; Hu, P.; Wang, B.; Redshaw, C.; Zhao, K. Beilstein J. Org. Chem. 2013, 9, 2852.
[20] Yang, F.; Zhang, Y.; Guo, H.; Lin, J. Tetrahedron Lett. 2013, 54, 4953.
[21] Zhao, K.; An, L.; Zhang, X.; Yu, W.; Hu, P.; Wang, B.; Xu, J.; Zeng, Q.; Monobe, H.; Shimizu, Y.; Heinrich, B.; Donnio, B. Chem. Eur. J. 2015, 21, 10379
[22] Wang, Y.; Zhang, C.; Wu, H.; Pu, J. J. Mater. Chem. C, 2014, 2, 1667.
[23] Zhao, K.; Zhou, H.; Yu, W.; Wang, B.; Hu, P. Acta Chim. Sinica 2011, 69, 1895 (in Chinese). (赵可清, 周慧, 余文浩, 汪必琴, 胡平, 化学学报, 2011, 69, 1895.)
[24] Boden, N.; Bushby, R. J.; Cammidge, A. N.; El-Mansoury, A.; Philip, S.; Martin, P. S.; Lu, Z. J. Mater. Chem. 1999, 9, 1391.
[25] Kumar, S. Liq. Cryst. 2005, 32, 1089.
[26] Wu, S. Introduction to Supramolecular Chemistry——Basic and Application, Science Press, Beijing, 2007, pp. 2~8 (in Chinese). (吴世康, 超分子光化学导论——基础与应用, 科学出版社, 北京, 2007, pp. 2~8.)
[27] Hassheider, T.; Benning, S. A.; Kitzerow, H.; Achard, M.; Bock. H. Angew. Chem., Int. Ed. 2001, 40, 2060.
[28] Wicklein, A.; Lang, A.; Much, M.; Thelakkat, M. J. Am. Chem. Soc. 2009, 131, 14442.
[29] Langhals, H. Helv. Chim. Acta 2005, 88, 1309.
[30] Wang, H.; Jeyakkumar, P.; Nagarajan, S.; Meng, J.; Zhou, C. Prog. Chem. 2015, 27, 704 (in Chinese). (王辉, Jeyakkumar, P.; Nagarajan, S.; 孟江平, 周成合, 化学进展, 2015, 27, 704.)
[31] Gupta, S. K.; Setia, S.; Sidiq, S.; Gupta, M.; Kumar, S.; Pal, S. K. RSC Adv. 2013, 3, 12060.
[32] Li, Z. Ph.D. Dissertation, Jilin University, Changchun, 2011 (in Chinese). (李在房, 博士论文, 吉林大学, 长春, 2011.)
[33] Lu, Z.; Zhang, X.; Zhan, C.; Jiang, B.; Zhang, X.; Chen, L.; Yao, J.; Phys. Chem. Chem. Phys. 2013, 15, 11375.
[34] Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Ringsdorf, H.; Schuhmacher, P.; Siemesmeyer, K. Phys. Rev. Lett. 1993, 70, 457.
[35] Zhao, B.; Peng, R.; Zhang, K.; Lin, K. A.; Luo, J.; Shao, J.; Ho, P., K. H.; Wu, J. Chem. Mater. 2010, 22, 435.
[36] Yang, L.; Shi, M.; Wang, M.; Chen, H. Tetrahedron 2008, 64, 5404.
[37] Wang, H.; Jeyakkumar, P.; Nagarajan, S.; Meng, J.; Zhou, C. Prog. Chem. 2015, 27, 704 (in Chinese). (王辉, Jeyakkumar, P.; Nagarajan, S.; 孟江平, 周成合, 化学进展, 2015, 27, 704.)
[38] Subban, P. Photochemical Principle, Translated by Lu, Z., People Education Press, Beijing, 1983, pp. 12~15 (in Chinese). (苏班, P., 光化学原理, 陆志刚译, 人民教育出版社, 北京, 1983, pp. 12~15.)
[39] Fan, M.; Yao, J.; Tong, Z. Molecular Photochemical and Optical Functional Materials Science, Science Press, Beijing, 2009, p. 18 (in Chinese). (樊美公, 姚建年, 佟振合, 分子光化学与光功能材料科学, 科学出版社, 北京, 2009, p. 18.)
[40] Fan, M.; Yao, J.; Tong, Z. Molecular Photochemical and Optical Functional Materials Science, Science Press, Beijing, 2009, pp. 84~86 (in Chinese). (樊美公, 姚建年, 佟振合, 分子光化学与光功能材料科学, 科学出版社, 北京, 2009, pp. 84~86.)
[41] Wu, S. Introduction to Supramolecular Chemistry——Basic and Application, Science Press, Beijing, 2007, pp. 37~39 (in Chinese). (吴世康, 超分子光化学导论——基础与应用, 科学出版社, 北京, 2007, pp. 37~39.)
[42] Kong, X.; He, Z.; Gopee, H.; Jing, X.; Cammidge, A. N. Tetrahedron Lett. 2011, 52, 77.
[43] Zhao, K.; Yang, G.; Yu, W.; Wang, B,; Hu, P. Chin. J. Org. Chem. 2009, 29, 2017 (in Chinese). (赵可清, 杨高帆, 余文浩, 汪必琴, 胡平, 有机化学, 2009, 29, 2017.)
[44] Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge. A. N. Org. Lett. 2011, 13, 764.
[45] Kong, X. Ph.D. Dissertation, Beijing Jiaotong University, Beijing, 2011 (in Chinese). (孔翔飞, 博士论文, 北京交通大学, 北京, 2011.)
[46] Mo, X.; Shi, M.; Huang, J.; Wang, M.; Chen, H. Dyes Pigm. 2008, 76, 236.
[47] Wang, R.; Shi, Z, Zhang, C.; Zhang, A.; Chen, J.; Guo W.; Sun, Z. Dyes Pigm. 2013, 98, 450.

文章导航

/