研究简报

铜催化、PhI(OAc)2参与下炔与胺构建炔丙胺类化合物的研究

  • 胡冬燕 ,
  • 李孟顺
展开
  • a 中国科学院成都有机化学研究所 成都 610041;
    b 中国科学院大学 北京 100049

收稿日期: 2016-03-03

  修回日期: 2016-04-11

  网络出版日期: 2016-04-20

Copper-Catalyzed Coupling of Alkynes and Amines for the Synthesis of Propargyl Amines in the Presence of PhI(OAc)2

  • Hu Dongyan ,
  • Li Mengsun
Expand
  • a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041;
    b University of the Chinese Academy of Sciences, Beijing 100049

Received date: 2016-03-03

  Revised date: 2016-04-11

  Online published: 2016-04-20

摘要

在CuBr催化以及醋酸碘苯[PhI(OAc)2]参与下,利用炔、胺建立了一种合成炔丙胺类化合物的新方法. 通过对金属催化剂的种类、反应溶剂和温度等因素的考察,最终确定了反应的最优条件为5 mol% CuBr作催化剂、乙腈为溶剂、氮气环境下70 ℃反应3 h. 同时,该反应具有一定的底物普适性,芳香炔和脂肪炔都适宜于该反应体系. 本文第一次报道了PhI(OAc)2用于炔丙胺类化合物的合成.

本文引用格式

胡冬燕 , 李孟顺 . 铜催化、PhI(OAc)2参与下炔与胺构建炔丙胺类化合物的研究[J]. 有机化学, 2016 , 36(8) : 1926 -1931 . DOI: 10.6023/cjoc201603003

Abstract

In the presence of iodobenzene diacetate (PhI(OAc)2), a new CuBr catalyzed coupling reaction of alkynes and amines for the synthesis of propargyl amines was developed. When terminal alkynes, PhI(OAc)2, and amines were reacted in CH3CN at 70 ℃ for 3 h under N2 atmosphere and in the presence of CuBr, the desired propargyl amines were obtained in good yields. Furthermore, no matter aromatic or aliphatic alkynes, were all found to tolerate the reaction conditions. To the best of our knowledge, it is the first time that PhI(OAc)2 has been used for the synthesis of propargyl amines in one-pot operation from alkynes and amines.

参考文献

[1] (a) Ohno, H.; Ohta, Y.; Oishi, S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295.
(b) Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323.
(c) Zhang, X.; Corma, A. Angew. Chem., Int. Ed. 2008, 47, 4358.
(d) Cao, K.; Zhang, F. M.; Tu, Y. Q.; Zhuo, X. T.; Fan, C. A. Chem. Eur. J. 2009, 15, 6332.
(e) Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 1979.
(f) Nakamura, H.; Onagi, S.; Kamakura, T. J. Org. Chem. 2005, 70, 2357.
(g) Sugiishi, T.; Kimura, A.; Nakamura, H. J. Am. Chem. Soc. 2010, 132, 5332.
(h) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J. F. J. Am. Chem. Soc. 2004, 126, 5958.
[2] (a) Farwick, A.; Helmchen, G. Org. Lett. 2010, 12, 1108.
(b) Jiang, B.; Xu, M. Angew. Chem., Int. Ed. 2004, 43, 2543.
(c) Yoon, T.; Shair, M. D.; Danishefsky, S. J.; Shulteo, G. K. J. Org. Chem. 1994, 59, 3752.
[3] (a) Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261.
(b) Samai, S.; Nandi, G. C.; Singh, M. S. Tetrahedron Lett. 2010, 51, 5555.
(c) Nakamura, H.; Ishikura, M.; Sugiishi, T.; Kamakura, T.; Biellmann, J. F. Org. Biomol. Chem. 2008, 6, 1471.
(d) Trybulski, E. J.; Zhang, J.; Kramss, R. H.; Mangano, R. M. J. Med. Chem. 1993, 36, 3533.
[4] (a) Birkmayer, W.; Knol, J.; Riederer, P. J. Neural Transm. 1985, 64, 113.
(b) Chen, J. J.; Swope, D. M.; Dashtipour, K. Clin. Ther. 2007, 29, 1825.
[5] Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968.
[6] Ahn, J. H.; Joung, M. J.; Yoon, N. M.; Oniciu, D. C.; Katritzky, A. R. J. Org. Chem. 1999, 64, 488.
[7] (a) Bieber, L. W.; da Silva, M. F. Tetrahedron Lett. 2004, 45, 8281.
(b) Fodor, A.; Kiss, A.; Debreczeni, N.; Hell, Z.; Gresits, I. Org. Biomol. Chem. 2010, 8, 4575.
(c) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5683.
(d) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Org. Lett. 2004, 6, 1001.
[8] Wei, C.; Li, Z.; Li, C. J. Org. Lett. 2003, 5, 4473.
[9] (a) Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584.
(b) Zhang, X.; Corma, A. Angew. Chem., Int. Ed. 2008, 47, 4358.
(c) Chng, L. L.; Yang, J.; Wei Y.; Ying, J. Y. Adv. Synth. Catal. 2009, 351, 2887.
[10] (a) Li, P. H.; Zhang, Y. C.; Wang, L. Chem. Eur. J. 2009, 15, 2045.
(b) Zeng, T. Q.; Chen, W. W.; Li, C. J. Green Chem. 2010, 12, 570.
[11] Ramu, E.; Varala, R.; Sreelatha, N.; Adapaa, S. R. Tetrahedron Lett. 2007, 48, 7184.
[12] (a) Zhang, Y.; Li, P.; Wang, M.; Wang, L. J. Org. Chem. 2009, 74, 4364.
(b) Yadav, J. S.; Subba Reddy, B. V.; Hara Gopal, A. V.; Patil, K. S. Tetrahedron Lett. 2009, 50, 3493.
[13] Chen, W. W.; Bi, H. P.; Li, C. J. Synlett 2010, 475.
[14] (a) Yu, D. Y.; Zhang, Y. G. Adv. Synth. Catal. 2011, 353, 163.
(b) Zeng, S. W.; Xu, S.; Wang, Y.; Yu, M.; Zhu, L.; Yao, X. Q. Chin. J. Org. Chem. 2015, 35, 827 (in Chinese).
(曾苏伟, 徐森, 姚小泉, 有机化学, 2015, 35, 827.)
[15] Chen, X. L.; Chen, T. Q.; Zhou, Y. B.; Au, C. T.; Han, L. B.; Yin, S. F. Org. Biomol. Chem. 2014, 12, 247.
[16] Tang, Y. C.; Xiao, T. B.; Zhou, L. Tetrahedron Lett. 2012, 53, 6199.
[17] Rahman, M.; Bagdi, A. K.; Majee, A.; Hajra, A. Tetrahedron Lett. 2011, 52, 4437.
[18] Berrichi, A.; Bachir, R.; Benabdallah, M.; Choukchou-Braham, N. Tetrahedron Lett. 2015, 56, 1302.
[19] Park, K.; Heo, Y.; Lee, S. Org. Lett. 2013, 15, 3322.
[20] Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett. 2004, 45, 729.
[21] Fodor, A.; Kiss, A.; Debreczeni, N.; Hell, Z.; Gresits, I. Org. Biomol. Chem. 2010, 8, 4575.

文章导航

/