研究论文

α-氰基肉桂酸乙酯/酰胺/N-溴代丁二酰亚胺三组分合成2-噁唑啉

  • 陈战国 ,
  • 侯丹 ,
  • 刘德娥 ,
  • 惠文萍
展开
  • 陕西师范大学化学化工学院 陕西省大分子科学实验室 西安 710119

收稿日期: 2016-03-18

  修回日期: 2016-04-22

  网络出版日期: 2016-05-06

基金资助

国家自然科学基金(No.20572066)、陕西省自然科学基金(No.2009JM2001)、陕西师范大学研究生创新基金(No.2008CXB009)资助项目.

Three-Component Synthesis of 2-Oxazolines from Ethyl α-Cyanocinnamate Derivatives with Amides and N-Bromosuccinimide

  • Chen Zhanguo ,
  • Hou Dan ,
  • Liu De'e ,
  • Hui Wenping
Expand
  • Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, ShaanxiNormal University, Xi'an 710119

Received date: 2016-03-18

  Revised date: 2016-04-22

  Online published: 2016-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No.20572066), the Natural Science Foundation of Shaanxi Province (No.2009JM2001) and the Innovation Foundation of Postgraduate Cultivation of Shaanxi Normal University (No.2008CXB009).

摘要

α-氰基肉桂酸乙酯衍生物、酰胺和N-溴代丁二酰亚胺(NBS)为原料,在无水碳酸钠促进下,以N,N-二甲基甲酸胺(DMF)为溶剂,室温下建立了三组分合成2-噁唑啉的新体系.在优化条件下,丙酰胺、丙烯酰胺、异丁酰胺和戊酰胺均能与不同结构的α-氰基肉桂酸乙酯衍生物反应,高收率地生成相应的2-噁唑啉(最高收率可达94%),说明该反应具有广泛的适应性.合成了39个新化合物,其结构均由核磁共振氢谱、碳谱和高分辨质谱确证.根据实验结果,提出了该反应的可能机理,该机理有力地支持了形成2-噁唑啉时的区域选择性.

本文引用格式

陈战国 , 侯丹 , 刘德娥 , 惠文萍 . α-氰基肉桂酸乙酯/酰胺/N-溴代丁二酰亚胺三组分合成2-噁唑啉[J]. 有机化学, 2016 , 36(9) : 2191 -2196 . DOI: 10.6023/cjoc201603032

Abstract

An easy and efficient new method for the three-component synthesis of 2-oxazolines from ethyl α-cyanocinnamate derivatives with amide and N-bromosuccinimide has been developed. A series of ethyl α-cyanocinnamate derivatives can be smoothly con-verted into corresponding 2-oxazoline derivatives promoted by Na2CO3 in N,N-dimethylformamide (DMF) at room temperature in high yield (up to 94%). The reactions of 11 structurally different substrates with propionamide, acrylamide, isobutyamide and pentanamide were investigated, respectively. The results indicated that the protocol has applicability in a large scope of ethyl α-cyanocinnamate derivatives and amides. A possible mechanism was proposed and it can explain well the full regiospecificity of the reaction. 39 new compounds were achieved via the three-component synthesis reaction and all the products structures were confirmed by their 1H NMR, 13C NMR and HRMS analysis.

参考文献

[1] (a) Braga, A. L.; Galetto, F. Z.; Taube, P. S.; Paixão, M. W.; Silveira, C. C.; Singh, D.; Vargas, F. J. Organomet. Chem. 2008, 693, 3563. (b) Lee, S.-H.; Bok, J.; Qi, X.; Kim, S. K.; Leed, Y.-S.; Yoon, J. Tetrahedron Lett. 2007, 48, 7309. (c) Yang, D.; Yip, Y. C.; Wang, X. C. Tetrahedron Lett. 1997, 38, 7083. (d) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 6230.
[2] (a) Saravanan, P.; Corey, E. J. J. Org. Chem. 2003, 68, 2760. (b) Kobayashi, S.; Fujikawa, S.-I.; Ohmae, M. J. Am. Chem. Soc. 2003, 125, 14357. (c) Sone, H.; Kigoshi, H.; Yamada, K. Tetrahedron, 1997, 53, 8149. (d) Kingston, D. G. I.; Chaudhary, A. G.; Gunatilaka, A. A. L.; Middleton, M. L. Tetrahedron Lett. 1994, 35, 4483.
[3] (a) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505. (b) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
[4] Frump, J. A. Chem. Rev. 1971, 71, 483.
[5] (a) Kangani, C. O.; Day, B. W. Tetrahedron Lett. 2009, 50, 5332. (b) Kangani, C. O.; Kelley, D. E. Tetrahedron Lett. 2005, 46, 8917. (c) Crosignani, S.; Swinnen, D. J. Comb. Chem. 2005, 7, 688. (d) Wipf, P.; Wang, X. D. J. Comb. Chem. 2002, 4, 656.
[6] (a) Zhou, P. W.; Blubaum, J. E.; Bums, C. T. Tetrahedron Lett. 1997, 38, 7019. (b) Hǒlderle, M.; Bar, G.; Mlhaupt, R. J. Polym. Sci., Part. A:Polym. Chem. 1997, 35, 2539. (c) Ohshima, T.; Iwasaki, T.; Mashima, K. Chem. Commun. 2006, 2711.
[7] (a) Mei, L.; Hai, Z. J.; Jie, S.; Ming, S.; Hao, Y.; Liang, H. K. J. Comb. Chem. 2009, 11, 220. (b) Baltork, I. M.; Moghadam, M.; Tangestaninejad, S. Catal. Commun. 2008, 9, 1153. (c) Baltork, I. M.; Khosropour, A. R.; Hojati, S. F. Catal. Commun. 2007, 8, 2000. (d) Jnaneshwara, G. K.; Deshpande, V. H.; Lalithambika, M.; Ravindranathan, T.; Bedekar, A. V. Tetrahedron Lett. 1998, 39, 459.
[8] (a) Chaudhry, P.; Schoenen, F.; Neuenswander, B. J. Comb. Chem. 2007, 9, 473. (b) Schwekendiek, K.; Glorius, F. Synthesis 2006, 2996. (c) Badiang, J. G.; Aubé, J. J. Org. Chem. 1996, 61, 2484.
[9] Wuts, P. G. M.; Northuis, J. M.; Kwan, T. A. J. Org. Chem. 2000, 65, 9223.
[10] (a) Hajra, S.; Bar, S.; Sinha, D.; Maji, B. J. Org. Chem. 2008, 73, 4320. (b) Minakata, S.; Morino, Y.; Ide, T. Chem. Commun. 2007, 3279. (c) Yeung, Y. Y.; Gao, X.; Corey, E. J. A. J. Am. Chem. Soc. 2006, 128, 9644. (d) Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67, 2101. (e) Minakata, S.; Nishimura, M.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. Tetrahedron Lett. 2001, 42, 9019.
[11] (a) Pei, W.; Timmons, C.; Xu, X.; Wei, H.-X.; Li, G. Org. Biomol. Chem. 2003, 1, 2919. (b) Wei, H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67, 4777. (c) Chen, D.-J.; Timmons, C.; Wei, H.-X.; Li, G. J. Org. Chem. 2003, 68, 5742. (d) Pei, W.; Wei, H.-X.; Chen, D.-J.; Headley, A. D.; Li, G. J. Org. Chem. 2003, 68, 8404.
[12] (a) Liu, X.-G.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2010, 1977. (b) Anabha, E.; Raveendran, R. R.; Paul, E. S.; Vijay, N. Org. Biomol. Chem. 2010, 8, 901. (c) Kawai, D.; Kawasumi, K.; Miyahara, T.; Hirashita, T.; Araki, S. Tetrahedron 2009, 65, 10390. (d) Nair, V.; Babu, B. P.; Varghese, V.; Sinu, C. R.; Paul, R. R.; Anabha, E. R.; Suresh, E. Tetrahedron Lett. 2009, 50, 3716.
[13] (a) Chen, Z. G.; Wang, Y.; Wei, J. F.; Zhao, P. F.; Shi, X. Y. J. Org. Chem. 2010, 75, 2085. (b) Chen, Z. G.; Zhou, J. M.; Wang, Y.; Li, W. L. Acta Chim. Sinica 2011, 69, 2851(in Chinese). (陈战国, 周继梅, 王芸, 李文丽, 化学学报, 2011, 69, 2851.) (c) Chen, Z. G.; Zhao, P. F.; Wang, Y. Eur. J. Org. Chem. 2011, 5887. (d) Li, W. L.; Chen, Z. G.; Zhou, J. M.; Hu, J. L.; Xia, W. Chin. J. Chem. 2012, 30, 830. (e) Wen, H.; Wang, Y. J.; Liu, D. E.; Liu, Y. L.; Ge, M.; Chen, Z. G. Chin. J. Org. Chem. 2014, 34, 916(in Chinese). (闻化, 王英杰, 刘德娥, 刘亚丽, 葛淼, 陈战国, 有机化学, 2014, 34, 916.) (f) Wei, J. F.; Chen, Z. G.; Gao, Y. N.; Zhang, P.; Wang, C. N.; Zhao, P. F.; Wang, Y.; Shi, X. Y. Chin. J. Chem. 2012, 30, 391. (g) Chen, Z. G.; Wei, J. F.; Li, R. T.; Shi, X. Y.; Zhao, P. F. J. Org. Chem. 2009, 74, 1371. (h) Chen, Z. G.; Zhou, L. Y.; Li, W. L.; Zhou, J. M.; Wang, C. N. Acta Chim. Sinica 2011, 69, 1093(in Chinese). (陈战国, 周利燕, 李文丽, 周继梅, 王传宁, 化学学报, 2011, 69, 1093.) (i) Chen, Z. G.; Wang, D.; Li, Y. N.; Wang, Y. J.; Hu, J. L.; Xia, W. Acta Chim. Sinica 2012, 70, 2236(in Chinese). (陈战国, 王丹, 李亚男, 王英杰, 胡均利, 夏伟, 化学学报, 2012, 70, 2236.) (j) Chen, Z. G.; Wei, J. F.; Wang, M. Z.; Zhou, L. Y.; Zhang, C. J.; Shi, X. Y. Adv. Synth. Catal. 2009, 351, 2358.
[14] Chen, Z. G.; Xia, W,; Wen, H.; Wang, D.; Li, Y. N.; Hu, J. L. Chem. Res. Chin. Univ. 2013, 29, 699.
[15] Li, W. L.; Chen, Z. G.; Zhou, J. M.; Hu, J. L.; Xia, W. Chin. J. Chem. 2012, 30, 830.
[16] Sun, Q.; Shi, L. X.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Chin. J. Chem. 2005, 23, 745.
[17] Rao, P. S.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 32, 5821.

文章导航

/