基于功能离子液体促进的有机反应研究进展
收稿日期: 2016-04-26
修回日期: 2016-05-28
网络出版日期: 2016-06-08
基金资助
浙江省自然科学基金(No.LY15B060002)、国家自然科学基金(Nos.21576176,21106090)和浙江省大学生科技创新活动计划(No.2015R430015)资助项目.
Application of Task-Specific Ionic liquids to Organic Synthesis
Received date: 2016-04-26
Revised date: 2016-05-28
Online published: 2016-06-08
Supported by
Project supported by the Natural Science Foundation of Zhejiang Province (No.LY15B060002), the National Natural Science Foundation of China (Nos.21576176, 21106090), and the Science and Technology Innovation Undergraduate Program of Zhejiang Province (No.2015R430015).
离子液体作为绿色溶剂和催化剂,具有低挥发性,优良的热稳定性、溶解性以及可回收等优点,近年来广泛应用于有机合成领域中,在提高反应速率,反应选择性等方面发挥了巨大作用.综述了离子液体作为催化剂或溶剂在传统有机合成反应中的最新研究成果,包括Baylis-Hillman反应、Michael加成反应、氧化还原反应、Knoevenagel缩合反应、Aldol缩合反应、Diels-Alder反应、Heck偶联反应、Suzuki反应、不对称反应、Biginelli反应、Mannich反应、Hantzsch多组分反应.分析离子液体结构对反应催化性能的影响,探讨其反应机理,为开发新型结构可调性功能离子液体打下基础.
徐慧婷 , 张超怀 , 陈钢 , 沈润溥 , 应安国 . 基于功能离子液体促进的有机反应研究进展[J]. 有机化学, 2016 , 36(10) : 2353 -2367 . DOI: 10.6023/cjoc201604053
Ionic liquids (ILs) have been widely used as green reaction solvents and/or catalysts in organic synthesis due to their advantages, including low volatility, good thermal stability, good solubility and recyclability. ILs have played a significant role in accelerating reaction rate and selectivity. The recent advances in the application of ILs as catalysts or solvents are summarized in this review, such as in Baylis-Hillman reaction, Michael addition, oxidation and reduction reaction, Knoevenagel condensation, aldol reaction, Diels-Alder reaction, Heck coupling reaction, Suzuki reaction, asymmetric reaction, Biginelli reaction, Mannich reaction and Hantzsch reaction. Relationship between structure and catalytic efficiency of ILs as well as plausible mechanism has been discussed, which is beneficial to develop the novel task-specific ionic liquids with diverse functionalities.
[1] Yi, F. P.; Zhang, X.; Sun, H. Y.; Chen, S. H. Acta Chim. Sinica 2012, 70, 741(in Chinese). (易封萍, 张旋, 孙海洋, 陈世洪, 化学学报, 2012, 70, 741.)
[2] Rogers, R. D. Nature 2007, 447, 917.
[3] Poulimenoua, N. I.; Giannopouloua, I.; Paniasa, D. Mater. Manuf. Process 2015, 30, 1403.
[4] Qureshi, Z. S.; Deshmukh, K. M.; Bhanage, B. M. Clean. Technol. Environ. Policy 2014, 16, 1487.
[5] Yang, J. B.; Zhou, L. H.; Guo, X. T.; Li, L. Chem. Eng. J. 2015, 280, 147.
[6] Zhou, Y.; Huang, W.; Chen, X. S.; Song, Z. B.; Tao, D. J. Catal. Lett. 2015, 145, 1830.
[7] Ali, E.; Alnashef, I.; Ajbar, A.; Mulyono, S.; Hizaddin, H. F.; Hadj-Kali, M. K. Korean J. Chem. Eng. 2013, 30, 2068.
[8] Xu, S. Y.; Zhang, F. X.; Li, J. Y.; Bai, Y.; Xiao, W. J.; Peng, J. J. Prog. Chem. 2015, 27, 1400(in Chinese). (徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建, 化学进展, 2015, 27, 1400.)
[9] Benzagouta, M. S.; AlNashef, I. M.; Karnanda, W.; Al-Khidir, K. Korean J. Chem. Eng. 2013, 30, 2108.
[10] Mai, N. L.; Kim, S. H.; Ha, S. H.; Shin, H. S.; Koo, Y. M. Korean J. Chem. Eng. 2013, 30, 1804.
[11] Tseng, M. C.; Liang, Y. M.; Chu, Y. H. Tetrahedron Lett. 2005, 46, 6131.
[12] Zang, H. H.; Zhang, Y.; Cheng, B. W.; Zhang, W. W.; Xu, X. L.; Ren, Y. L. Chin. J. Chem. 2012, 30, 362.
[13] Ma, Y. Q.; Wang, R. Chem. J. Chin. Univ. 2013, 35, 760(in Chinese). (马云倩, 王睿, 高等学校化学学报, 2013, 35, 760.)
[14] Popescu, A. M.; Constantin, V. Chem. Res. Chin. Univ. 2014, 30, 119.
[15] (a) Vander, H. T.; Wellens, S.; Verachtert, K.; Binnemans, K. Green Chem. 2013, 15, 919. (b) Clark, K. D.; Nacham, O.; Yu, H. L.; Li, T. H.; Yamsek, M. M.; Ronning, D. R.; Anderson, J. L. Anal. Chem. 2015, 87, 1552.
[16] Abbott, A. P.; Frisch, G.; Gurman, S. J.; Hillman, A. R.; Hartley, J.; Holyoak, F.; Ryder, K. S. Chem. Commun. 2011, 47, 10031.
[17] Tschan, M. J. L.; Dieboh, O.; Leeuwen, P. W. N. M. Top. Cata1. 2014, 57, 1054.
[18] Oh, Y.; Hu, X. L. Chem. Commun. 2015, 51, 13698.
[19] Gallardo, I.; Vila, N. J. Org. Chem. 2010, 75, 680.
[20] Hsieh, Y. T.; Sun, I. W. Chem. Commun. 2014, 50, 246.
[21] Armand, M.; Endres, F.; Macfarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
[22] Wang, C. F.; Chen, Y. J.; Zhuo, K. L. Chem. Commun. 2013, 49, 3336.
[23] Hou, H. L.; Li, Z. F.; Ying, A. G.; Xu, S. L. Chin. J. Org. Chem. 2014, 34, 1277(in Chinese). (侯海亮, 李志峰, 应安国, 许松林, 有机化学, 2014, 34, 1277.)
[24] Hou, H. L.; Li, Z. F.; Ying, A. G.; Xu, S. L. Chin. J. Org. Chem. 2014, 34, 1074(in Chinese). (李志峰, 侯海亮, 应安国, 许松林, 有机化学, 2014, 34, 1074.)
[25] Pan, L. Y.; Li, Z. F.; Ni, Y. X.; Yao, Z. G.; Yu, Z. P.; Wu, W. K.; Ying, A. G. Chem. J. Chin. Univ. 2015, 36, 81(in Chinese). (泮丽亚, 李志峰, 倪宇翔, 姚振刚, 余志平, 吴文康, 应安国, 高等学校化学学报, 2015, 36, 81.)
[26] (a) Basavaiah, D.; Dharma, R. P.; Suguna, H. R. Tetrahedron 1996, 52, 8001. (b) Basaviah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
[27] Zhao, S. H.; Zhang, Q. J.; Duan, X. E. Synth. Commun. 2011, 41, 3289.
[28] Zhao, S. H.; Wang, D.; Wang, M.; Kang, J.; Zhang, L. W.; Chin. J. Org. Chem. 2015, 35, 865(in Chinese). (赵三虎, 王豆, 王敏, 康锦, 张立伟. 有机化学, 2015, 35, 865.)
[29] Song, Y.; Ke, H. H.; Wang, N.; Wang, L. M.; Zou, G. Tetrahedron 2009, 65, 9086.
[30] Lenardão, E. J.; Feijó, J. O.; Thurow, Samuel.; Perin, G.; Jacob, R. G.; Silveira, C. C. Tetrahedron Lett. 2009, 50, 5215.
[31] Keithellakpam, S.; Laitonjam, W. S. Chin. Chem. Lett. 2014, 25, 767.
[32] Chelghoum, M.; Bahnous, M.; Bouraiou, A.; Bouacida, S.; Belfaitah, A. Tetrahedron Lett. 2012, 53, 4059.
[33] Ying, A. G.; Li, Z. F.; Yang, J. G.; Liu, S.; Xu, S. L.; Yan, H.; Wu, C. L. J. Org. Chem. 2014, 79, 6510.
[34] Hou, H. L.; Qiu, F. L.; Ying, A. G.; Xu, S. L. Chin. Chem. Lett. 2015, 26, 377.
[35] Du, Z. Y.; Ng, H. F.; Zhang, K.; Zeng, H. Q.; Wang, J. Org. Biomol. Chem. 2011, 9, 6930.
[36] Van, Doorslaer. C.; Schellekens, Y.; Mertens, P.; Binnemansb, K.; De, Vos. D. Phys. Chem. Chem. Phys. 2010, 10, 1741.
[37] Sun, W. Y.; Ueyama, N.; Nakamura, A. Tetrahedron 1993, 49, 1357.
[38] Nishiguchi, T.; Asano, F. J. Org. Chem. 1989, 54, 1531.
[39] Sahiner, N.; Sagbas, S.; Nahit, A. RSC Adv. 2015, 5, 18183.
[40] Das, J.; Velusamy, P. J. Taiwan Inst. Chem. Eng. 2014, 45, 2280.
[41] Sahiner, N.; Kaynak, A.; Butun, S. J. Non-Cryst. Solids 2012, 358, 758.
[42] Chauhan, M. S.; Singh, S. J. Mol. Catal. A:Chem. 2015, 398, 184.
[43] Chinnappan, A.; Kim, H. RSC. Adv. 2013, 3, 3399.
[44] Freeman, F. Chem. Rev. 1980, 80, 329.
[45] Tietze, L. F. Chem. Rev. 1996, 96, 115.
[46] Rumer, J. W.; Levick, M.; Dai, S. Y.; Rossbauer, S.; Huang, Z. G.; Biniek. L.; Anthopoulos, T. D.; Durrant, J. R.; Procter, D. J.; McCulloch, I. Chem. Commun. 2013, 49, 4465.
[47] Liang, F.; Pu, Y. J.; Kurata, T.; Kido, J.; Nishide, H. Polymer 2005, 46, 3767.
[48] Zahouily, M.; Salah, M.; Bahlaouane, B.; Rayadh, A.; Houmam, A.; Hamed, E. A.; Sebti, S. Tetrahedron 2004, 60, 1631.
[49] Ouyang, F.; Zhou, Y.; Li, Z M.; Hu, N.; Tao, D. J. Korean J. Chem. Eng. 2014, 31, 1377.
[50] Bahrami, K.; Khodaei, M. M.; Babajani N.; Naali, F. J. Iran. Chem. Soc. 2014, 11, 1675.
[51] Ding, L. B.; Li, H. S.; Zhang, Y. P.; Zhang, K.; Yuan, H.; Wu, Q.; Zhao, Y.; Jiao, Q. Z.; Shi, D. X. RSC Adv. 2015, 5, 21415.
[52] Ying, A. G.; Ni, Y. X.; Xu, S. L.; Liu, S.; Yang, J. G.; Li, R. R. Ind. Eng. Chem. Res. 2014, 53, 5678.
[53] Liu, Y. T.; Li, R.; Xing, Y. J. Chin. J. Org. Chem. 2015, 35, 1520(in Chinese). (刘玉婷, 李戎, 邢彦军, 有机化学, 2015, 35, 1520.)
[54] Davoodnia, A.; Yassaghi, G. Chin. J. Catal. 2012, 33, 1950.
[55] Iglesias, M.; Gonzalez-Olmos, R.; Cota, I.; Medina, F. Chem. Eng. J. 2010, 162, 802.
[56] Wang, C.; Liu, J.; Leng, W. G.; Gao, Y. N. Int. J. Mol. Sci. 2014, 15, 1284.
[57] Cui, W. H.; Zhang, Y. M.; Jia, R. Y.; Wang, Y.; Wei, T. B. Chin. J. Org. Chem. 2015, 35, 890(in Chinese). (崔文辉, 张有明, 贾如琰, 王昱, 魏太保, 有机化学, 2015, 35, 890.)
[58] Ying, A. G.; Xu, S. L.; Liu, Shuo.; Ni, Y. X.; Yang, J. G.; Wu, C. L. Ind. Eng. Chem. Res. 2014, 53, 547.
[59] Erfurt, K.; Wandzik, I.; Walczak, K.; Matuszek, K.; Chrobok, A. Green Chem. 2014, 16, 3508.
[60] Zhu, X. Y.; Liu, J. Q.; Zhang, D. G.; Liu, C. B. Comput. Theor. Chem. 2012, 996, 21.
[61] Wang, Y. P.; Lee, H. M. J. Org. Chem. 2015, 791, 90.
[62] Nowrouzia, N.; Tarokha, D.; Motevalli, S. J. Mol. Catal. A:Chem. 2014, 385, 13.
[63] Yang, S. R.; Ling, G. W.; Ma, J. Y.; Zhang, L.; Li, J. X.; Luo, W. Chin. J. Org. Chem. 2014, 34, 1148(in Chinese). (杨少容, 凌厂围, 马建业, 张蕾, 李建晓, 罗维, 有机化学, 2014, 34, 1148.)
[64] Wang, M.; Yuan, X. B.; Li, H. Y.; Ren, L. M.; Sun, Z. Z.; Hou, Y. J.; Chu, W. Y. Catal. Commun. 2015, 58, 154.
[65] Boruah, P. R.; Koiri, M. J.; Bora, U.; Sarma, D. Tetrahedron Lett. 2014, 55, 2423.
[66] Xu, D.; Zhou, Z. M.; Da, L.; Tang, L. W.; Zhang, J. Bioorg. Med. Chem. Lett. 2015, 25, 1961.
[67] Kaur, A.; Singh, V. Synlett 2014, 1191.
[68] Liu, X. R.; Chen, C.; Xiu, Y. H.; Chen, A. J.; Guo, L.; Zhang, R.; Chen, J. Z.; Hou, Z. S. Catal. Commun. 2015, 67, 90.
[69] Shaterian, H. R.; Aghakhanizadeh, M. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 1064.
[70] Fang, D.; Zhang, D. Z.; Liu, Zu. L. Monatsh. Chem. 2010, 141, 419.
[71] He, L. Q.; Qin, S. J.; Chang, T.; Sun, Y. Z.; Zhao, J. Q. Int. J. Mol. Sci. 2014, 15, 8656.
[72] Nagarajan, S.; Kandasamy, E. Catal. Lett. 2014, 144, 1507.
[73] Dayanand, P.; Dattatray, C.; Abhijeet, M. Catal. Lett. 2014, 144, 949.
[74] Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y. S.; Davoodnia, A. Synth. Commun. 2010, 40, 523.
[75] Ying, A. G.; Liu, S.; Yang, J. G.; Hu, H. N. Ind. Eng. Chem. Res. 2014, 53, 16143.
/
〈 |
|
〉 |