综述与进展

有机合成中腈的去对称化生物转化反应研究进展

  • 敖宇飞 ,
  • 王其强 ,
  • 王德先
展开
  • a 中国科学院化学研究所 北京分子科学国家实验室 中国科学院分子识别与功能重点实验室 北京 100190;
    b 中国科学院大学 北京 100049

收稿日期: 2016-05-09

  修回日期: 2016-06-11

  网络出版日期: 2016-06-20

基金资助

国家自然科学基金(No.21502202)资助项目.

Biocatalytic Desymmetrization of Dinitriles in Organic Synthesis

  • Ao Yufei ,
  • Wang Qiqianga ,
  • Wang Dexiana
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2016-05-09

  Revised date: 2016-06-11

  Online published: 2016-06-20

Supported by

Project supported by the National Natural Science Foundation of China (No.21502202).

摘要

腈的化学水合和水解具有反应条件苛刻、低选择性等缺点,与之相反,腈的去对称化生物转化反应具有反应条件温和、高效、高选择性以及理论产率可达100%的优点,已成为合成对映体纯多官能化羧酸和酰胺的最有效方法之一.将分别从前手性戊二腈、前手性丙二腈、内消旋环状二腈以及其他类底物出发,简单综述腈类化合物的去对称化生物转化反应及其在有机合成中的应用进展,并对各类反应的条件、选择性以及规律机制进行讨论和总结.

本文引用格式

敖宇飞 , 王其强 , 王德先 . 有机合成中腈的去对称化生物转化反应研究进展[J]. 有机化学, 2016 , 36(10) : 2333 -2343 . DOI: 10.6023/cjoc201605009

Abstract

In comparison with the chemical hydration and hydrolysis of nitriles, which usually involves harsh reaction condi-tions and low selectivity, biocatalytic desymmetrizations of prochiral or meso nitriles are highly efficient, highly enantioselective and environmentally benign. Therefore, biocatalysis and biotransformation has offered an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by other methods. This review summarizes the biocatalytic desymmetrization of prochiral nitriles including glutaronitriles, malonitriles and meso cyclic dinitriles during the past two decades.

参考文献

[1] Faber, K. Biotransformations in Organic Chemistry, 6th ed., Springer, Berlin, 2011.
[2] Rappoport, Z.; Patai, S. The Chemistry of Functional Groups, The Chemistry of the Cyano Group, Wiley, London, 1970.
[3] (a) Evgred, D.; Harnett, S. Cyanide Compounds in Biology (Ciba Foundation Symposium 140), Wiley, Chichester, 1998. (b) Jallageas, J.-C.; Arnaud, A.; Galzy, P. Adv. Biochem. Eng. 1980, 12, 1. (c) Legras, J.-L.; Chuzel, G.; Arnaud, A.; Galzy, P. World J. Microbiol. Biotechnol. 1990, 6, 83.
[4] (a) Harper, D. B. Biochem. Soc. Trans. 1976, 4, 502. (b) Harper, D. B. Biochem. J. 1977, 165, 309. (c) Kobayashi, M.; Shimizu, S. FEBS Microbiol Lett. 1994, 120, 217.
[5] (a) Asano, Y.; Tani, Y.; Yamada, H. Agric. Biol. Chem. 1980, 44, 2251. (b) Asano, Y.; Tachibana, Y.; Tani, Y.; Yamada, H. Agric. Biol. Chem. 1982, 46, 1175.
[6] (a) Brenner, C. Curr. Opin. Struct. Biol. 2002, 12, 775. (b) Liu, Z. -Q.; Dong, L. -Z.; Cheng, F.; Xue, Y. -P.; Wang, Y. -S.; Ding, J. -N.; Zheng, Y. -G.; Shen, Y. -C. J. Agric. Food Chem. 2011, 59, 11560.
[7] (a) Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 201. (b) Song, L. Y.; Wang, M. Z.; Shi, J. J.; Xue, Z. Q.; Wang, M. -X.; Qian, S. J. Biochem. Biophy. Res. Commun. 2007, 362, 319.
[8] (a) Fournand, D.; Arnaud, A. J. Appl. Microbiol. 2001, 91, 381. (b) Ohtaki, A.; Murata, K.; Sato, Y.; Noguchi, K.; Miyatake, H.; Dohmae, N.; Yamada, K.; Yohda, M.; Odaka, M. Biochim. Biophys. Acta 2010, 1804, 184.
[9] (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta, H. Biosci. Biotechnol. Biochem. 1997, 61, 1419. (b) Martínková, L.; K?en, V. Biocatal. Biotrans. 2002, 20, 73. (c) Banerjee, A.; Sharma, R. Banerjee, U. C. Appl. Microbiol. Biotechnol. 2002, 60, 33. (d) Wang, M.-X. Top. Catal. 2005, 35, 117. (e) Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; K?en, V. Rhodococcus. Environ. Int. 2009, 35, 162. (f) Wang, M.-X. Chimia 2009, 63, 331. (g) Prasad, S.; Bhalla, T. C. Biotechnol. Adv. 2010, 28, 725; (h) Velankar, H.; Clarke, K. G.; du Preez, R.; Cowan, D. A.; Burton, S. G. Trends Biotechnol. 2010, 28, 561. (i) Wang, M.-X. Top. Organomet. Chem. 2011, 36, 105. (j) Ramteke, P. W.; Maurice, N. G.; Joseph, B.; Wadher, B. J. Biotechnol. Appl. Biochem. 2013, 60, 459. (k) Wang, M.-X. Acc. Chem. Res. 2015, 48, 602.
[10] (a) Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313. (b) Palomo, J. M.; Cabrera, Z. Curr. Org. Synth. 2012, 9, 791.
[11] Kakya, H.; Sakai, N.; Yokoyama, M.; Sugai, T.; Ohta, H. Chem. Lett. 1991, 1823.
[12] (a) Crosby, J. A.; Parratt, J. S.; Turner, N. J. Tetrahedron:Asymmetry 1992, 3, 1547. (b) Beard, T.; Cohen, M. A.; Parratt, J. S.; Turner, N. J.; Crosby, J.; Moilliet, N. J. Tetrahedron:Asymmetry 1993, 4, 1085.
[13] (a) Wang, M.-X.; Liu, C.-S.; Li, J.-S. Meth-Cohn, O. Tetrahedron Lett. 2000, 41, 8549. (b) Wang, M.-X.; Liu, C.-S.; Li, J.-S. Tetrahedron:Asymmetry 2002, 12, 3367.
[14] Vink, M. K. S.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002, 67, 7869.
[15] (a) Santis, D. G.; Zhu, Z. L.; Greenberg, W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024. (b) Santis, D. G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z. L.; Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P.; Kretz, K.; Burk, M. J. J. Am. Chem. Soc. 2003, 125, 11476.
[16] Bergeron, S.; Chaplin, D. A.; Edwards, J. H.; Ellis, B. S. W.; Hill, C. L.; Karen, H.-T.; Knight, J. R.; Mahoney, T.; Osborne, A. P.; Ruecroft, G. Org. Process Res. Dev. 2006, 10, 661.
[17] Kinfe, H. H.; Chhiba, V.; Frederick, J.; Bode, M. L.; Mathiba, K.; Steenkamp, P. A.; Brady, D. J. Mol. Catal. B:Enzym. 2009, 59. 231.
[18] Xu, M. Z.; Ren, J.; Gong, J. S.; Dong, W. Y.; Wu, Q. Q.; Xu, Z. H.; Zhu, D. M. Chin. J. Biotechnol. 2013, 29, 31(in Chinese). (许美珍, 任杰, 龚劲松, 董文玥, 吴洽庆, 许正宏, 朱敦明, 生物工程学报, 2013, 29, 31.)
[19] Duan, Y. T.; Yao, P. Y.; Ren, J.; Han, C.; Li, Q.; Yuan, J.; Feng, J. H.; Wu, Q. Q.; Zhu, D. M. Sci. Chin. Chem. 2014, 57, 1164.
[20] Nojiri, M.; Uekita, K.; Ohnuki, M.; Taoka, N.; Yasohara, Y. J. Appl. Microbiol. 2013, 115, 1127.
[21] Yokoyama, M.; Sugai, T.; Ohta, H. Tetrahedron:Asymmetry 1993, 4, 1081.
[22] Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fuhshuku, K.; Ohta, H.; Sugai, T. Tetrahedron:Asymmetry 2004, 15, 2817.
[23] (a) Wu, Z. -L.; Li, Z. -Y. Chem. Commun. 2003, 386. (b) Wu, Z. -L.; Li, Z. -Y. J. Org. Chem. 2003, 68, 2479. (c) Wu, Z. -L.; Li, Z. -Y. Tetrahedron:Asymmetry 2003, 14, 2133.
[24] Vink, M. K. S.; Wijtmans, R.; Reisinger, C.; Berg, R. J. F.; Schortinghuis, C. A.; Schwab, H.; Schoemaker, H. E.; Rutjes, F. P. J. T. Biotechnol. J. 2006, 1, 569.
[25] Zhang, L.-B.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2011, 67, 5604.
[26] Zhang, L.-B.; Wang, D.-X.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2012, 77, 5584.
[27] Matoishi, K.; Sano, A.; Imai, N.; Yamazaki, T.; Yokoyama, M.; Sugai, T.; Ohta, H. Tetrahedron:Asymmetry 1998, 9, 1097.
[28] (a) Chen, P.; Gao, M.; Wang, D.-X.; Zhao, L.; Wang, M.-X. Chem. Common. 2012, 48, 3482. (b) Chen, P.; Gao, M.; Wang, D.-X.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2012, 77, 4063.
[29] Ao, Y.-F.; Wang, D.-X.; Zhao, L.; Wang, M.-X. Chem. Asian J. 2015, 10, 938.
[30] (a) Kielbasinski, P.; Rachwalski, M.; Mikolajczyk, M.; Szyrej, M.; Wieczorek, M. W.; Wijtmans, R.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2007, 349,1387. (b) Kielbasinski, P.; Rachwalski, M.; Kwiatkowska, M.; Mikolajczyk, M.; Wieczorek, M. W.; Szyrej, M.; Sieron, L.; Rutjes, F. P. J. T. Tetrahedron:Asymmetry 2007, 18, 2108.
[31] Fernandes, B. C. M.; Mateo, C.; Kiziak, C.; Chmura, A.; Wacker, J.; Rantwijk, F. V.; Stolz, A.; Sheldon, R. A. Adv. Synth. Catal. 2006, 348, 2597.

文章导航

/