综述与进展

富勒烯二聚体的结构及电化学性质研究进展

  • 常伟伟 ,
  • 赵增典
展开
  • 山东理工大学分析测试中心 淄博 255049

收稿日期: 2016-05-14

  修回日期: 2016-06-05

  网络出版日期: 2016-07-07

基金资助

山东省中青年科学家科研奖励基金(No.BS2015CL011)资助项目.

Structure and Electrochemical Property of Fullerene Dimers

  • Chang Weiwei ,
  • Zhao Zengdian
Expand
  • Analysis and Testing Center, Shandong University of Technology, Zibo 255049

Received date: 2016-05-14

  Revised date: 2016-06-05

  Online published: 2016-07-07

Supported by

Project supported by the Foundation for Outstanding Young and Middle-Aged Scientist of Shandong Province (No.BS2015CL011).

摘要

富勒烯二聚体由于其独特的结构及优异的性质在国际上引起了持续而广泛的关注.目前已被合成分离出近百种二聚体化合物,包括单键相连的富勒烯二聚体、含有活性连接基团的二聚体、全碳富勒烯二聚体和不对称的富勒烯二聚体等.这些新的分子体系具有优异的光电性质,有望在人工光合成、新型光电子器件及超分子化学中得到重要应用.就近年来研究报道的富勒烯二聚体进行了归纳分类,介绍了其结构形式、电化学性质,并对未来的发展方向进行了展望.

关键词: 富勒烯; 二聚体; 电化学

本文引用格式

常伟伟 , 赵增典 . 富勒烯二聚体的结构及电化学性质研究进展[J]. 有机化学, 2016 , 36(11) : 2651 -2661 . DOI: 10.6023/cjoc201605022

Abstract

Fullerene dimers have attracted extensive attention due to their unique structures and fascinating properties. Hundreds of fullerene dimers have been isolated so far, including the singly-bonded fullerene dimers, fullerene dimers connected by electroactive bridges, all-carbon fullerene dimers and unsymmetrical dimers, etc. These new molecular systems have potential applications in the area of artificial photosynthesis, photoelectronic device and supramolecular chemistry. Based on the different structure types, various fullerene dimers reported are summarized and classified in this review. Furthermore, the electrochemistry property of the dimers is discussed and the research trend of this area is also prospected.

参考文献

[1] Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
[2] Sánchez, L.; Sierra, M.; Martín, N.; Guldi, D. M.; Wienk, M. W.; Janssen, R. A. J. Org. Lett. 2005, 7, 1691.
[3] (a) Martin, C. A.; Ding, D.; Sørensen, J. K.; Bjørnholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc. 2008, 130, 13198.
(b) Wang T. T.; Zeng, H, P. Chin. J. Org. Chem. 2008, 28, 1303 (in Chinese). (王婷婷, 曾和平, 有机化学, 2008, 28, 1303.)
[4] (a) Delgado, J. L.; Espíldora, E.; Liedtke, M.; Sperlich, A.; Rauh, D.; Baumann, A.; Deibel, C.; Dyakonov, V.; Martín, N. Chem.-Eur. J. 2009, 15, 13474.
(b) Liu, J.; Guo, X.; Qin, Y.; Liang, S.; Guo, Z.-X.; Li, Y. J. Mater. Chem. 2012, 22, 1758.
(c) Morinaka, Y.; Nobori, M.; Murata, M.; Wakamiya, A.; Sagawa, T.; Susumu, Y.; Murata, Y. Chem. Commun. 2013, 49, 3670.
(d) Guo, Y.; Zhu, H.; Liu, G.; Yan, H.; Zhu, B.; Li, S.; Sun, Y.; Li, G. J. Org. Chem. 2016, 36, 172 (in Chinese). (郭颖, 朱华新, 刘桂林, 严慧敏, 朱冰洁, 李帅, 孙亚军, 李果华, 有机化学, 2016, 36, 172.)
[5] (a) Segura, J. L.; Martin, N. Chem. Soc. Rev. 2000, 29, 13.
(b) Giacalone, F.; Martín, N. Chem. Rev. 2006, 106, 5136.
(c) Wei, X.; Luo, W.; Wei, X. W. Chin. J. Org. Chem. 2007, 27, 153 (in Chinese). (魏祥龙, 罗薇, 魏先文, 有机化学, 2007, 27, 153.)
[6] Komatsu, K. In Organic Solid State Reactions, Ed.:Toda, F., Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 185~206.
[7] Kellner, I. D.; von Gernler, M. S.; Tzirakis, M. D.; Orfanopoulos, M.; Drewello, T. J. Phys. Chem. C 2014, 118, 30253.
[8] Yoshida, M.; Sultana, F.; Uchiyama, N.; Yamada, T.; Iyoda, M. Tetrahedron Lett. 1999, 40, 735.
[9] Nambo, M.; Wakamiya, A.; Yamaguchi, S.; Itami, K. J. Am. Chem. Soc. 2009, 131, 15112.
[10] Nambo, M.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133, 2402.
[11] Itami, K. Chem. Rec. 2011, 11, 226.
[12] Nambo, M.; Itami, K. Chem.-Eur. J. 2009, 15, 4760.
[13] Lu, S.; Jin, T.; Kwon, E.; Bao, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2012, 51, 802.
[14] Lu, S.; Jin, T.; Bao, M.; Yamamoto, Y. Org. Lett. 2012, 14, 3466.
[15] Zhang, T.-H.; Lu, P.; Wang, F.; Wang, G.-W. Org. Biomol. Chem. 2003, 1, 4403.
[16] Wang,G.-W.; Wang,C.-Z.; Zhu, S.-E.; Murata, Y. Chem. Cummun. 2011, 47, 6111.
[17] Cheng, F.; Murata, Y.; Komatsu, K. Org. Lett. 2002, 4, 2541.
[18] Yang, W.-W.; Li, Z.-J.; Gao, X. J. Org. Chem. 2011, 76, 6067.
[19] Smith, A. B.; Tokuyama, H.; Strongin, R. M.; Furst, G. T.; Romanow, W. J.; Chait, B. T.; Mirza, U. A.; Haller, I. J. Am. Chem. Soc. 1995, 117, 9359.
[20] Lebedkin, S.; Ballenweg, S.; Gross, J.; Taylor, R.; Krätschmer, W. Tetrahedron Lett. 1995, 36, 4971.
[21] Taylor, R.; Barrow, M. P.; Drewello, T. Chem. Commun. 1998, 2497.
[22] Balch, A. L.; Costa, D. A.; Fawcett, W. R.; Winkler, K. J. Phys. Chem. 1996, 100, 4823.
[23] Gromov, A.; Lebedkin, S.; Ballenweg, S.; G. Avent, A.; Taylor, R.; Kratschmer, W. Chem. Commun. 1997, 209.
[24] Tsyboulski, D.; Heymann, D.; Bachilo, S. M.; Alemany, L. B.; Weisman, R. B. J. Am. Chem. Soc. 2004, 126, 7350.
[25] Giesa, S.; H. Gross, J.; Gleiter, R.; Giesa, S.; Gromov, A.; Kratschmer, W.; E. Hull, W.; Lebedkin, S. Chem. Commun. 1999, 465.
[26] Dragoe, N.; Shimotani, H.; Hayashi, M.; Saigo, K.; de Bettencourt-Dias, A.; Balch, A. L.; Miyake, Y.; Achiba, Y.; Kitazawa, K. J. Org. Chem. 2000, 65, 3269.
[27] Murata, Y.; Kato, N.; Komatsu, K. J. Org. Chem. 2001, 66, 7235.
[28] Fujiwara, K.; Komatsu, K. Org. Lett. 2002, 4, 1039.
[29] Murata, Y.; Han, A.; Komatsu, K. Tetrahedron Lett. 2003, 44, 8199.
[30] Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature 1997, 387, 583.
[31] Komatsu, K.; Wang, G.-W.; Murata, Y.; Tanaka, T.; Fujiwara, K.; Yamamoto, K.; Saunders, M. J. Org. Chem. 1998, 63, 9358.
[32] Makarova, T. L. Semiconductors 2011, 35, 243.
[33] Pusztai, T.; Faigel, G.; Gránásy, L.; Tegze, M.; Pekker, S. Europhys. Lett. 1995, 32, 721.
[34] (a) Lee, K. H.; Park, S. S.; Suh, Y.; Yamabe, T.; Osawa, E.; Lüthi, H. P.; Gutta, P.; Lee, C. J. Am. Chem. Soc. 2001, 123, 110856.
(b) Zhang, G. Chin. J. Org. Chem 2012, 32, 1010 (in Chinese). (张改红, 有机化学, 2012, 32, 1010.)
[35] Komatsu, K.; Fujiwara, K.; Tanaka, T.; Murata, Y. Carbon 2000, 38, 1529.
[36] Dragoe, N.; Shimotani, H.; Wang, J.; Iwaya, M.; de Bettencourt-Dias, A.; Balch, A. L.; Kitazawa, K. J. Am. Chem. Soc. 2001, 123, 1294.
[37] Ren, T.; Sun, B.; Chen, Z.; Qu, L.; Yuan, H.; Gao, X.; Wang, S.; He, R.; Zhao, F.; Zhao, Y.; Liu, Z.; Jing, X. J. Phys. Chem. B 2007, 111, 6344.
[38] Zhao, Y.; Chen, Z.; Yuan, H.; Gao, X.; Qu, L.; Chai, Z.; Xing, G.; Yoshimoto, S.; Tsutsumi, E.; Itaya, K. J. Am. Chem. Soc. 2004, 126, 11134.
[39] Anderson, H. L.; Faust, R.; Rubin, Y.; Diederich, F. Angew. Chem., In. Ed 1994, 33, 1366.
[40] Timmerman, P.; Witschel, L. E.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M. Helv. Chim. Acta 1996, 79, 6.
[41] Komatsu, K.; Takimoto, N.; Murata, Y.; Wan, T. S. M.; Wong, T. Tetrahedron Lett. 1996, 37, 6153.
[42] Paquette, L. A.; Graham, R. J., J. Org. Chem. 1995, 60, 2958.
[43] (a) Wang, G.-W.; Chen, Z.-X.; Murata, Y.; Komatsu, K. Tetrahedron 2005, 61, 4851.
(b) Zhu, Y.-L.; Zhou, S.-Y.; Cao, L.; Kan, Y.-H. Chin. J. Org. Chem. 2007, 27, 313 (in Chinese). (朱玉兰, 周书雨, 曹丽, 阚玉和, 有机化学, 2007, 27, 313.)
[44] (a) Zhang, J.; Porfyrakis, K.; Morton, J. J.; Sambrook, M. R.; Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. J. Phys. Chem. C 2008, 112, 2802.
(b) Zhang, S.; Gan, L.; Huang, C.; Lu, M.; Pan, J.; He, X. J. Org. Chem. 2002, 67, 883.
[45] Briggs, J. B.; Miller, G. P. C. R. Chim. 2006, 9, 916.
[46] Delgado, J. L.; Osuna, S.; Bouit, P.-A.; Martínez-Alvarez, R.; Espíldora, E.; Solà, M.; Martín, N. J. Org. Chem. 2009, 74, 8174.
[47] (a) Belik, P.; Gügel, A.; Spickermann, J.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 78.
(b) Gügel, A.; Belik, P.; Walter, M.; Kraus, A.; Harth, E.; Wagner, M.; Spickermann, J.; Müllen, K. Tetrahedron 1996, 52, 5007.
(c) Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem. 1999, 64, 3483.
(d) de Lucas, A. I.; Martín, N.; Sánchez, L.; Seoane, C. Tetrahedron Lett. 1996, 37, 9391.
(e) Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98, 2527.
(f) Armspach, D.; Constable, E. C.; Diederich, F.; Housecroft, C. E.; Nierengarten, J.-F. Chem.-Eur. J. 1998, 4, 723.
(g) Konev, A. S.; Khlebnikov, A. F.; Frauendorf, H. J. Org. Chem. 2011, 76, 6218.
[48] Xiao, Z.; Matsuo, Y.; Maruyama, M.; Nakamura, E. Org. Lett. 2013, 15, 2176.
[49] Chang, W.-W.; Li, Z.-J.; Gao, X. Org. Lett. 2013, 15, 1642.
[50] Li, Z.-J.; Li, S.-H.; Sun, T.; Gao, X. J. Org. Chem. 2014, 79, 197.
[51] Li, Z.-J.; Li, S.-H.; Sun, T.; Hou, H.-L.; Gao, X. J. Org. Chem. 2015, 80, 3566.
[52] (a) Konarev, D. V.; Troyanov, S. I.; Nakano, Y.; Ustimenko, K. A.; Otsuka, A.; Yamochi, H.; Saito, G.; Lyubovskaya, R. N. Organometallics 2013, 32, 4038.
(b) Lee, K.; Song, H.; Kim, B.; Park, J. T.; Park, S.; Choi, M. -G. J. Am. Chem. Soc. 2002, 124, 2872.
[53] Park, B. K.; Lee, G.; Kim, K. H.; Kang, H.; Lee, C. Y.; Miah, M. A.; Jung, J.; Han, Y.-K.; Park, J. T. J. Am. Chem. Soc. 2006, 128, 11160.
[54] Nakamura, E.; Mouri, S.; Nakamura, Y.; Harano, K.; Isobe, H. Org. Lett. 2008, 10, 4923.
[55] Fujiwara, K.; Komatsu, K.; Wang, G.-W.; Tanaka, T.; Hirata, K.; Yamamoto, K.; Saunders, M. J. Am. Chem. Soc. 2001, 123, 10715.

文章导航

/