综述与进展

基于方酸菁类小分子给体与富勒烯受体材料的有机光伏电池研究进展

  • 司长峰 ,
  • 陈果 ,
  • 魏斌
展开
  • a 上海大学材料科学与工程学院 上海 200072;
    b 上海大学 新型显示技术及应用集成教育部重点实验室 上海 200072

收稿日期: 2016-05-12

  修回日期: 2016-06-16

  网络出版日期: 2016-07-08

基金资助

国家自然科学基金(No.61604093)、上海市自然科学基金(No.16ZR1411000)、上海市浦江人才计划(No.16PJ1403300)和上海高校青年教师培养资助计划(No.ZZSD15049)资助项目.

Progress of Organic Photovoltaic Cells Based on Squaraine Small Molecule Donors and Fullerene Acceptors

  • Si Changfeng ,
  • Chen Guo ,
  • Wei Bin
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200072;
    b Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072

Received date: 2016-05-12

  Revised date: 2016-06-16

  Online published: 2016-07-08

Supported by

Project supported by the National Natural Science Foundation of China (No.61604093),the Natural Science Foundation of Shanghai City (No.16ZR1411000),the Shanghai Pujiang Program (No.16PJ1403300) and the Shanghai University Young Teacher Training Program (No.ZZSD15049).

摘要

方酸菁类小分子材料具有合成路线简单、吸收系数高、能带隙可调、可见-近红外区吸收强烈的性质以及光、热稳定性高的特点,被认为是一类非常有应用前景的有机光伏电池材料.其作为给体材料,结合富勒烯受体材料的有机光伏电池能量转化效率已经超过了8%.综述了近年来基于方酸菁类小分子给体材料和富勒烯受体材料的有机光伏电池的研究进展,系统分析了方酸菁类小分子的分子结构、薄膜形貌和分子聚集等对器件光伏性能的影响.为方酸菁类小分子材料在有机光伏电池方面的应用拓宽了思路,并对以后的研究提出了展望.

本文引用格式

司长峰 , 陈果 , 魏斌 . 基于方酸菁类小分子给体与富勒烯受体材料的有机光伏电池研究进展[J]. 有机化学, 2016 , 36(11) : 2602 -2618 . DOI: 10.6023/cjoc201605020

Abstract

Squaraine (SQ) small molecules have been considered as efficient photoactive materials for organic photovoltaic (OPV) cells due to their simple synthetic routes, high absorption coefficients with tunable bandgaps and bandwidths in the visible-near infrared region, as well as high photochemical and thermal stabilities. The SQ donor and fullerene acceptor based OPV devices have realized the power conversion efficiencies of over 8%. In this paper, the progress of SQ donor and fullerene acceptor based OPV cells is reviewed, the effect of molecular structure, molecular aggregation and film morphology on the device performance is systematically summarized. The applied field of SQ donors in OPV cells is widened, and some proposals for future study are also given.

参考文献

[1] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys.1954, 25, 676.
[2] Chen, G.; Sasabe, H.; Sano, T.; Wang, X. F.; Hong, Z.; Kido, J.; Yang, Y. Nanotechnology 2013, 24, 484007.
[3] Li, Z.; Peng, Q.; He, P.; Wang, Y.; Hou, Q.; Li, B.; Tian, W. Chin. J. Org. Chem. 2012, 32, 834 (in Chinese). (李在房, 彭强, 和平, 王艳玲, 侯秋飞, 李本林, 田文晶, 有机化学, 2012, 32, 834.)
[4] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[5] Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
[6] Chen, G.; Wang, T.; Li, C.; Yang, L.; Xu, T.; Zhu, W.; Gao, Y.; Wei, B. Org. Electron. 2016, 36, 50.
[7] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
[8] He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photonics 2015, 9, 174.
[9] Yu, W.; Huang, L.; Yang, D.; Fu, P.; Zhou, L.; Zhang, J.; Li, C. J. Mater. Chem. A 2015, 3, 10660.
[10] Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X. Adv. Mater. 2015, 27, 1035.
[11] Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. China:Chem. 2015, 58, 248.
[12] Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Nat. Photonics 2015, 9, 520.
[13] Huang, J.; Li, C. Z.; Chueh, C. C.; Liu, S. Q.; Yu, J. S.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5, DOI:10.1002/aenm.201500406.
[14] Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245.
[15] Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886.
[16] Chen, G.; Sasabe, H.; Igarashi, T.; Hong, Z.; Kido, J. J. Mater. Chem. A 2015, 3, 14517.
[17] Ajayaghosh, A. Acc. Chem. Res. 2005, 38, 449.
[18] Merritt, V. Y.; Hovel, H. J. Appl. Phys. Lett. 1976, 29, 414.
[19] Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640.
[20] Wang, S.; Mayo, E.; Perez, M.; Griffe, L.; Wei, G.; Djurovich, P.; Forrest, S.; Thompson, M. Appl. Phys. Lett. 2009, 94, 233304.
[21] Wei, G.; Lunt, R. R.; Sun, K.; Wang, S.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2010, 10, 3555.
[22] Wei, G.; Wang, S.; Sun, K.; Thompson, M. E.; Forrest, S. R. Adv. Energy Mater. 2011, 1, 184.
[23] Zimmerman, J. D.; Lassiter,B. E.; Xiao, X.; Sun, K.; Dolocan, A.; Gearba, R.; Vanden Bout, D. A.; Stevenson, K. J.; Wick-ramasinghe, P.; Thompson, M. E.; Forrest, S. R. ACS Nano 2013, 7, 9268.
[24] Silvestri, F.; pez-Duarte, I. L.; Seitz, W.; Beverina, L.; Mar-tínez-Díaz, M. V.; Marks, T. J.; Guldi, D. M.; Pagani, G. A.; Torres, T. Chem. Commun. 2009, 4500.
[25] Smits,E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Adv. Mater. 2007, 19, 734.
[26] Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani, G. A.; Marks, T. J.; Facchetti, A. J. Am. Chem. Soc. 2010, 132, 4074.
[27] Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.
[28] Mayerhöffer, U.; Deing, K. C.; Grub, K.; Braunschweig, H.; Meerholz, K.; Würthner, F. Angew. Chem., Int. Ed. 2009, 48, 8776.
[29] Deing, K. C.; Mayerhöffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328.
[30] Wei, G.; Wang, S.; Renshaw, K.; Thompson, M. E.; Forrest, S. R. ACS Nano 2010, 4, 1927.
[31] Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery K.; Yang Y. Nat. Mater. 2005, 4, 864.
[32] Wang, S.; Hall, L.; Diev, V. V.; Haiges, R.; Wei, G.; Xiao, X.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2011, 23, 4789.
[33] Chen, G.; Sasabe, H.; Sasaki, Y.; Katagiri, H.; Wang, X. F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J. Chem. Mater. 2014, 26, 1356.
[34] Wei, G.; Xiao, X.; Wang, S.; Zimmerman, J. D.; Sun, K.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2011, 11, 4261.
[35] Wei, G.; Xiao, X.; Wang, S.; Sun, K.; Bergemann, K. J.; Thompson, M. E.; Forrest, S. R. ACS Nano 2012, 6, 972.
[36] Xiao, X.; Wei, G.; Wang, S.; Zimmerman, J. D.; Renshaw, C. K.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2012, 24, 1956.
[37] Lassiter, B. E.; Zimmerman, J. D.; Panda, A.; Xiao, X.; Forrest, S. R. Appl. Phys. Lett. 2012, 101, 063303.
[38] Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
[39] Chen, G.; Yokoyama, D.; Sasabe, H.; Hong, Z.; Yang, Y.; Kido, J. Appl. Phys. Lett. 2012, 101, 083904.
[40] Chen, G.; Sasabe, H.; Wang, Z.; Wang, X.; Hong, Z.; Kido, J.; Yang, Y. Phys. Chem. Chem. Phys. 2012, 14, 14661.
[41] Chen, G.; Sasabe, H.; Wang, Z.; Wang, X. F.; Hong, Z.; Yang, Y.; Kido, J. Adv. Mater. 2012, 24, 2768.
[42] Sasabe, H.; Igrashi, T.; Sasaki, Y.; Chen, G.; Hong, Z.; Kido, J. RSC Adv. 2014, 4, 42804.
[43] Chen, G.; Sasabe, H.; Lu, W.; Wang, X. F.; Kido, J.; Hong, Z.; Yang, Y. J. Mater. Chem. C 2013, 1, 6547.
[44] Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Huang, Y.; Lu, Z.; Zhao, S.; Chem. Commun. 2013, 49, 10465.
[45] Yang, L.; Yang, Q.; Yang, D.; Luo, Q.; Zhu, Y.; Huang, Y.; Zhao, S.; Lu, Z. J. Mater. Chem. A 2014, 2, 18313.
[46] Yang, D.; Jiao, Y.; Huang, Y.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Org. Electron. 2016, 32, 179.
[47] Yang, D.; Zhu, Y.; Jiao, Y.; Yang, L.; Yang, Q.; Luo, Q.; Pu, X.; Huang, Y.; Zhao, S.; Lu, Z. RSC Adv. 2015, 5, 20724.
[48] Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Chen, Y.; Zhu, Y.; Huang, Y.; Lu, Z.; Zhao, S. Chem. Commun. 2014, 50, 9346.
[49] Yang, D.; Yang, L.; Huang, Y.; Jiao, Y.; Igarashi, T.; Chen, Y.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. ACS Appl. Mater. Inter. 2015, 7, 13675.
[50] Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang,Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A 2015, 3, 17704.
[51] Chen, Y.; Zhu, Y.; Yang, D.; Luo, Q.; Yang, L.; Huang, Y.; Zhao, S.; Lu, Z. Chem. Commun. 2015, 51, 6133.
[52] Yang, L.; Yang, D.; Chen, Y.; Luo, Q.; Zhang, M.; Huang, Y.; Lu, Z.; Sasabe, H.; Kido, J. RSC Adv. 2016, 6, 1877.
[53] So, S.; Choi, H.; Kim, C.; Cho, N.; Ko, H. M.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2011, 95, 3433.
[54] So, S.; Choi, H.; Ko, H. M.; Kim, C.; Peak, S.; Cho, N.; Song, K.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2012, 98, 224.
[55] Peak, S.; Choi, H.; Jo, H.; Lee, K.; Song, K.; Siddiqui, S. A.; Sharma, G. D.; Ko, J. J. Mater. Chem. C 2015, 3, 7029.
[56] An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Energy Environ. Sci. 2016, 9, 281.
[57] Fan, B.; Maniglio, Y.; Simeunovic, M.; Kuster, S.; Geiger, T.; Hany, R.; Nüesch, F. Int. J. Photoenergy 2009, DOI:10.1155/2009/581068.
[58] Spencer, S.; Hu, H.; Li, Q.; Ahn, H. Y.; Qaddoura, M.; Yao, S.; Ioannidis, A.; Belfield, K.; Collison, C. J. Prog. Photovoltaics:Res. Appl. 2014, 22, 488.
[59] Spencer, S. D.; Bougher, C.; Heaphy, P. J.; Murcia, V. M.; Gallivan, C. P.; Monfette, A.; Andersen, J. D.; Cody, J. A.; Conrad, B. R.; Collson, C. J. Sol. Energy Mater. Sol. Cells 2013, 112, 202.
[60] Brück, S.; Krause, C.; Turrisi, R.; Beverina, L.; Wilken, S.; Saak, W.; Lützen, A.; Borchert, H.; Schiek, M.; Parisi, J. Phys. Chem. Chem. Phys. 2014, 16, 1067.
[61] Kylberg, W.; Zhang, Y.; Aebersold, A.; Castro, de F. A., Geiger, T.; Heier, J.; Kuster, S.; Ma, C. Q.; Bäuerle, P.; Nüesch, F.; Tisserant, J. N.; Hany, R. Org. Electron. 2012, 13, 1204.
[62] Rao, B. A.; Yesudas, K.; Kumar, G. S.; Bhanuprakash, K.; Rao, V. J.; Sharma, G. D.; Singh, S. P. Photochem. Photobiol. Sci. 2013, 12, 1688.
[63] Lam, S. L.; Liu, X.; Zhao, F.; Lee, C. K.; Kwan, W. L. Chem. Commun. 2013, 49, 4543.
[64] Pelle, A. M. D.; Homnick, P. J.; Bae, Y.; Lahti, P. M.; Thayumanavan, S. J. Phys. Chem. C 2014, 118, 1793.
[65] Karak, S.; Homnick, P. J.; Pelle, A. M. D.; Bae, Y.; Duzhko, V. V.; Liu, F.; Russell, T. P.; Lahti, P. M.; Thayumanavan, S. ACS Appl. Mater. Inter. 2014, 6, 11376.

文章导航

/