基于方酸菁类小分子给体与富勒烯受体材料的有机光伏电池研究进展
收稿日期: 2016-05-12
修回日期: 2016-06-16
网络出版日期: 2016-07-08
基金资助
国家自然科学基金(No.61604093)、上海市自然科学基金(No.16ZR1411000)、上海市浦江人才计划(No.16PJ1403300)和上海高校青年教师培养资助计划(No.ZZSD15049)资助项目.
Progress of Organic Photovoltaic Cells Based on Squaraine Small Molecule Donors and Fullerene Acceptors
Received date: 2016-05-12
Revised date: 2016-06-16
Online published: 2016-07-08
Supported by
Project supported by the National Natural Science Foundation of China (No.61604093),the Natural Science Foundation of Shanghai City (No.16ZR1411000),the Shanghai Pujiang Program (No.16PJ1403300) and the Shanghai University Young Teacher Training Program (No.ZZSD15049).
司长峰 , 陈果 , 魏斌 . 基于方酸菁类小分子给体与富勒烯受体材料的有机光伏电池研究进展[J]. 有机化学, 2016 , 36(11) : 2602 -2618 . DOI: 10.6023/cjoc201605020
Squaraine (SQ) small molecules have been considered as efficient photoactive materials for organic photovoltaic (OPV) cells due to their simple synthetic routes, high absorption coefficients with tunable bandgaps and bandwidths in the visible-near infrared region, as well as high photochemical and thermal stabilities. The SQ donor and fullerene acceptor based OPV devices have realized the power conversion efficiencies of over 8%. In this paper, the progress of SQ donor and fullerene acceptor based OPV cells is reviewed, the effect of molecular structure, molecular aggregation and film morphology on the device performance is systematically summarized. The applied field of SQ donors in OPV cells is widened, and some proposals for future study are also given.
[1] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys.1954, 25, 676.
[2] Chen, G.; Sasabe, H.; Sano, T.; Wang, X. F.; Hong, Z.; Kido, J.; Yang, Y. Nanotechnology 2013, 24, 484007.
[3] Li, Z.; Peng, Q.; He, P.; Wang, Y.; Hou, Q.; Li, B.; Tian, W. Chin. J. Org. Chem. 2012, 32, 834 (in Chinese). (李在房, 彭强, 和平, 王艳玲, 侯秋飞, 李本林, 田文晶, 有机化学, 2012, 32, 834.)
[4] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[5] Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
[6] Chen, G.; Wang, T.; Li, C.; Yang, L.; Xu, T.; Zhu, W.; Gao, Y.; Wei, B. Org. Electron. 2016, 36, 50.
[7] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
[8] He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photonics 2015, 9, 174.
[9] Yu, W.; Huang, L.; Yang, D.; Fu, P.; Zhou, L.; Zhang, J.; Li, C. J. Mater. Chem. A 2015, 3, 10660.
[10] Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X. Adv. Mater. 2015, 27, 1035.
[11] Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. China:Chem. 2015, 58, 248.
[12] Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Nat. Photonics 2015, 9, 520.
[13] Huang, J.; Li, C. Z.; Chueh, C. C.; Liu, S. Q.; Yu, J. S.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5, DOI:10.1002/aenm.201500406.
[14] Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245.
[15] Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886.
[16] Chen, G.; Sasabe, H.; Igarashi, T.; Hong, Z.; Kido, J. J. Mater. Chem. A 2015, 3, 14517.
[17] Ajayaghosh, A. Acc. Chem. Res. 2005, 38, 449.
[18] Merritt, V. Y.; Hovel, H. J. Appl. Phys. Lett. 1976, 29, 414.
[19] Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640.
[20] Wang, S.; Mayo, E.; Perez, M.; Griffe, L.; Wei, G.; Djurovich, P.; Forrest, S.; Thompson, M. Appl. Phys. Lett. 2009, 94, 233304.
[21] Wei, G.; Lunt, R. R.; Sun, K.; Wang, S.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2010, 10, 3555.
[22] Wei, G.; Wang, S.; Sun, K.; Thompson, M. E.; Forrest, S. R. Adv. Energy Mater. 2011, 1, 184.
[23] Zimmerman, J. D.; Lassiter,B. E.; Xiao, X.; Sun, K.; Dolocan, A.; Gearba, R.; Vanden Bout, D. A.; Stevenson, K. J.; Wick-ramasinghe, P.; Thompson, M. E.; Forrest, S. R. ACS Nano 2013, 7, 9268.
[24] Silvestri, F.; pez-Duarte, I. L.; Seitz, W.; Beverina, L.; Mar-tínez-Díaz, M. V.; Marks, T. J.; Guldi, D. M.; Pagani, G. A.; Torres, T. Chem. Commun. 2009, 4500.
[25] Smits,E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Adv. Mater. 2007, 19, 734.
[26] Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani, G. A.; Marks, T. J.; Facchetti, A. J. Am. Chem. Soc. 2010, 132, 4074.
[27] Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.
[28] Mayerhöffer, U.; Deing, K. C.; Grub, K.; Braunschweig, H.; Meerholz, K.; Würthner, F. Angew. Chem., Int. Ed. 2009, 48, 8776.
[29] Deing, K. C.; Mayerhöffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328.
[30] Wei, G.; Wang, S.; Renshaw, K.; Thompson, M. E.; Forrest, S. R. ACS Nano 2010, 4, 1927.
[31] Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery K.; Yang Y. Nat. Mater. 2005, 4, 864.
[32] Wang, S.; Hall, L.; Diev, V. V.; Haiges, R.; Wei, G.; Xiao, X.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2011, 23, 4789.
[33] Chen, G.; Sasabe, H.; Sasaki, Y.; Katagiri, H.; Wang, X. F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J. Chem. Mater. 2014, 26, 1356.
[34] Wei, G.; Xiao, X.; Wang, S.; Zimmerman, J. D.; Sun, K.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2011, 11, 4261.
[35] Wei, G.; Xiao, X.; Wang, S.; Sun, K.; Bergemann, K. J.; Thompson, M. E.; Forrest, S. R. ACS Nano 2012, 6, 972.
[36] Xiao, X.; Wei, G.; Wang, S.; Zimmerman, J. D.; Renshaw, C. K.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2012, 24, 1956.
[37] Lassiter, B. E.; Zimmerman, J. D.; Panda, A.; Xiao, X.; Forrest, S. R. Appl. Phys. Lett. 2012, 101, 063303.
[38] Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
[39] Chen, G.; Yokoyama, D.; Sasabe, H.; Hong, Z.; Yang, Y.; Kido, J. Appl. Phys. Lett. 2012, 101, 083904.
[40] Chen, G.; Sasabe, H.; Wang, Z.; Wang, X.; Hong, Z.; Kido, J.; Yang, Y. Phys. Chem. Chem. Phys. 2012, 14, 14661.
[41] Chen, G.; Sasabe, H.; Wang, Z.; Wang, X. F.; Hong, Z.; Yang, Y.; Kido, J. Adv. Mater. 2012, 24, 2768.
[42] Sasabe, H.; Igrashi, T.; Sasaki, Y.; Chen, G.; Hong, Z.; Kido, J. RSC Adv. 2014, 4, 42804.
[43] Chen, G.; Sasabe, H.; Lu, W.; Wang, X. F.; Kido, J.; Hong, Z.; Yang, Y. J. Mater. Chem. C 2013, 1, 6547.
[44] Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Huang, Y.; Lu, Z.; Zhao, S.; Chem. Commun. 2013, 49, 10465.
[45] Yang, L.; Yang, Q.; Yang, D.; Luo, Q.; Zhu, Y.; Huang, Y.; Zhao, S.; Lu, Z. J. Mater. Chem. A 2014, 2, 18313.
[46] Yang, D.; Jiao, Y.; Huang, Y.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Org. Electron. 2016, 32, 179.
[47] Yang, D.; Zhu, Y.; Jiao, Y.; Yang, L.; Yang, Q.; Luo, Q.; Pu, X.; Huang, Y.; Zhao, S.; Lu, Z. RSC Adv. 2015, 5, 20724.
[48] Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Chen, Y.; Zhu, Y.; Huang, Y.; Lu, Z.; Zhao, S. Chem. Commun. 2014, 50, 9346.
[49] Yang, D.; Yang, L.; Huang, Y.; Jiao, Y.; Igarashi, T.; Chen, Y.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. ACS Appl. Mater. Inter. 2015, 7, 13675.
[50] Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang,Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A 2015, 3, 17704.
[51] Chen, Y.; Zhu, Y.; Yang, D.; Luo, Q.; Yang, L.; Huang, Y.; Zhao, S.; Lu, Z. Chem. Commun. 2015, 51, 6133.
[52] Yang, L.; Yang, D.; Chen, Y.; Luo, Q.; Zhang, M.; Huang, Y.; Lu, Z.; Sasabe, H.; Kido, J. RSC Adv. 2016, 6, 1877.
[53] So, S.; Choi, H.; Kim, C.; Cho, N.; Ko, H. M.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2011, 95, 3433.
[54] So, S.; Choi, H.; Ko, H. M.; Kim, C.; Peak, S.; Cho, N.; Song, K.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2012, 98, 224.
[55] Peak, S.; Choi, H.; Jo, H.; Lee, K.; Song, K.; Siddiqui, S. A.; Sharma, G. D.; Ko, J. J. Mater. Chem. C 2015, 3, 7029.
[56] An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Energy Environ. Sci. 2016, 9, 281.
[57] Fan, B.; Maniglio, Y.; Simeunovic, M.; Kuster, S.; Geiger, T.; Hany, R.; Nüesch, F. Int. J. Photoenergy 2009, DOI:10.1155/2009/581068.
[58] Spencer, S.; Hu, H.; Li, Q.; Ahn, H. Y.; Qaddoura, M.; Yao, S.; Ioannidis, A.; Belfield, K.; Collison, C. J. Prog. Photovoltaics:Res. Appl. 2014, 22, 488.
[59] Spencer, S. D.; Bougher, C.; Heaphy, P. J.; Murcia, V. M.; Gallivan, C. P.; Monfette, A.; Andersen, J. D.; Cody, J. A.; Conrad, B. R.; Collson, C. J. Sol. Energy Mater. Sol. Cells 2013, 112, 202.
[60] Brück, S.; Krause, C.; Turrisi, R.; Beverina, L.; Wilken, S.; Saak, W.; Lützen, A.; Borchert, H.; Schiek, M.; Parisi, J. Phys. Chem. Chem. Phys. 2014, 16, 1067.
[61] Kylberg, W.; Zhang, Y.; Aebersold, A.; Castro, de F. A., Geiger, T.; Heier, J.; Kuster, S.; Ma, C. Q.; Bäuerle, P.; Nüesch, F.; Tisserant, J. N.; Hany, R. Org. Electron. 2012, 13, 1204.
[62] Rao, B. A.; Yesudas, K.; Kumar, G. S.; Bhanuprakash, K.; Rao, V. J.; Sharma, G. D.; Singh, S. P. Photochem. Photobiol. Sci. 2013, 12, 1688.
[63] Lam, S. L.; Liu, X.; Zhao, F.; Lee, C. K.; Kwan, W. L. Chem. Commun. 2013, 49, 4543.
[64] Pelle, A. M. D.; Homnick, P. J.; Bae, Y.; Lahti, P. M.; Thayumanavan, S. J. Phys. Chem. C 2014, 118, 1793.
[65] Karak, S.; Homnick, P. J.; Pelle, A. M. D.; Bae, Y.; Duzhko, V. V.; Liu, F.; Russell, T. P.; Lahti, P. M.; Thayumanavan, S. ACS Appl. Mater. Inter. 2014, 6, 11376.
/
〈 |
|
〉 |