基于异靛青的聚合物场效应晶体管材料研究进展
收稿日期: 2016-06-08
修回日期: 2016-07-04
网络出版日期: 2016-07-08
基金资助
国家国家自然科学基金(No.21302009)资助项目.
Research Progress in Isoindigo-Based Polymer Field-Effect Transistor Materials
Received date: 2016-06-08
Revised date: 2016-07-04
Online published: 2016-07-08
Supported by
Project supported by the Major State Basic Research Development Program from the Ministry of Science and Technology (973 Program, No.2013CB933501), and the National Natural Science Foundation of China (No.21302009).
20世纪80年代以来,有机电子学领域的研究取得了很大进展.有机半导体材料凭借其成本低、质量轻、柔性好、易修饰、可大面积溶液加工等特点吸引了学术界以及工业界的极大关注.其中,第三代有机共轭聚合物,给-受体(Donor-Acceptor,简称D-A)共轭聚合物材料的发展尤为迅速.最近,以异靛青(Isoindigo,ⅡD)类结构作为受体片段的D-A共轭聚合物被发现具有优异的性能,特别是在聚合物场效应晶体管器件中获得了最高3.62 cm2·V-1·s-1的空穴迁移率,其衍生物获得14.4 cm2·V-1·s-1的空穴迁移率,具有良好的应用前景.综述了近年来国内外关于异靛青结构在聚合物场效应晶体管材料中的应用,对其分子结构设计、器件制备以及构效关系做了详细介绍,希望为今后异靛青类化合物的应用拓展提供指导思路.
卢阳 , 丁一凡 , 王婕妤 , 裴坚 . 基于异靛青的聚合物场效应晶体管材料研究进展[J]. 有机化学, 2016 , 36(10) : 2272 -2283 . DOI: 10.6023/cjoc201606015
Since the 1980 s, organic electronics had made great progress. Organic semiconductors have attracted much attention of scientists from both academy and industry due to their promising applications in low-cost, lightweight, flexible and solution-processable electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance of organic semiconductors. Recently, isoindigo-based polymers develop rapidly, especially as organic field-effect transistors (OFETs) materials, and high hole mobilities up to 3.62 cm2·V-1·s-1 for IID and 14.4 cm2·V-1·s-1 for its derivatives, were successfully achieved. In this review, the recent advance in isoindigo-based polymer field-effect transistor materials is summarized, which focus on the molecular design and synthesis, device fabrication and structure-property rela-tionship study of isoindigo-based polymers, aiming to providing valuable information for the materials exploitation in the future.
[1] Heeger, A. J.; Sariciftci, N. S.; Namdas, E. B. Semiconducting and Metallic Polymers, Oxford University Press, 2010.
[2] Chiang, C. K.; Fincher Jr, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
[3] Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.
[4] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[5] Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[6] Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354.
[7] Yuen, J. D.; Wudl, F. Energy Environ. Sci. 2013, 6, 392.
[8] Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25, 1859.
[9] Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
[10] Irimia-Vladu, M.; G?owacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A. Adv. Mater. 2012, 24, 375.
[11] Papageorgiou, C.; Borer, X. Helv. Chim. Acta 1988, 71, 1079.
[12] Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.
[13] Estrada, L. A.; Stalder, R.; Abboud, K. A.; Risko, C.; Brédas, J.-L.; Reynolds, J. R. Macromolecules 2013, 46, 8832.
[14] Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099.
[15] Gholamzadeh, P.; Mohammadi Ziarani, G.; Badiei, A.; Abolhassani Soorki, A.; Lashgari, N. Res. Chem. Intermed. 2012, 39, 3925.
[16] Bergman, J.; Romero, I. J. Heterocycl. Chem. 2010, 47, 1215.
[17] Zhao, N.; Qiu, L.; Wang, X.; An, Z.; Wan, X. Tetrahedron Lett. 2014, 55, 1040.
[18] Bogdanov, A.; Mironov, V.; Musin, L.; Musin, R. Synthesis 2010, 3268.
[19] El-Kateb, A.; Hennawy, I.; Shabana, R.; Osman, F. Phosphorus, Sulfur Relat. Elem. 1984, 20, 329.
[20] Lathourakis, G. E.; Litinas, K. E. J. Chem. Soc., Perkin Trans. 11996, 491.
[21] Minami, T.; Matsumoto, M.; Agawa, T. J. Chem. Soc., Chem. Commun. 1976, 1053b.
[22] Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801.
[23] Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.
[24] Mei, J.; Wu, H. C.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W. C.; Bao, Z. Adv. Funct. Mater. 2015, 25, 3455.
[25] Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.
[26] Lei, T.; Dou, J.-H.; Ma, Z.-J.; Yao, C.-H.; Liu, C.-J.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025.
[27] Lei, T.; Dou, J.-H.; Ma, Z.-J.; Liu, C.-J.; Wang, J.-Y.; Pei, J. Chem. Sci. 2013, 4, 2447.
[28] Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.
[29] Dutta, G. K.; Han, A. R.; Lee, J.; Kim, Y.; Oh, J. H.; Yang, C. Adv. Funct. Mater. 2013, 23, 5317.
[30] Chen, M. S.; Niskala, J. R.; Unruh, D. A.; Chu, C. K.; Lee, O. P.; Fréchet, J. M. J. Chem. Mater. 2013, 25, 4088.
[31] Xu, S.; Ai, N.; Zheng, J.; Zhao, N.; Lan, Z.; Wen, L.; Wang, X.; Pei, J.; Wan, X. RSC Adv. 2015, 5, 8340.
[32] Hasegawa, T.; Ashizawa, M.; Matsumoto, H. RSC Adv. 2015, 5, 61035.
[33] Meager, I.; Nikolka, M.; Schroeder, B. C.; Nielsen, C. B.; Planells, M.; Bronstein, H.; Rumer, J. W.; James, D. I.; Ashraf, R. S.; Sadhanala, A.; Hayoz, P.; Flores, J.-C.; Sirringhaus, H.; McCulloch, I. Adv. Funct. Mater. 2014, 24, 7109.
[34] Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.
[35] Zhao, N.; Ai, N.; Cai, M.; Wang, X.; Pei, J.; Wan, X. Polym. Chem. 2016, 7, 235.
[36] Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.
[37] Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Adv. Mater. 2013, 25, 6589.
[38] Lei, T.; Xia, X.; Wang, J. Y.; Liu, C. J.; Pei, J. J. Am. Chem. Soc. 2014, 136, 2135.
[39] Cao, Y.; Yuan, J.-S.; Zhou, X.; Wang, X.-Y.; Zhuang, F.-D.; Wang, J.-Y.; Pei, J. Chem. Commun. 2015, 51, 10514.
[40] He, Y.; Quinn, J.; Deng, Y.; Li, Y. Org. Electron. 2016, 35, 41.
[41] Jiang, Y.; Gao, Y.; Tian, H.; Ding, J.; Yan, D.; Geng, Y.; Wang, F. Macromolecules 2016, 49, 2135.
[42] Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Chem. Mater. 2012, 24, 1762.
[43] Park, K. H.; Cheon, K. H.; Lee, Y. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Chem. Commun. 2015, 51, 8120.
[44] Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477.
[45] Kim, G.; Han, A. R.; Lee, H. R.; Lee, J.; Oh, J. H.; Yang, C. Chem. Commun. 2014, 50, 2180.
[46] Grenier, F.; Berrouard, P.; Pouliot, J.-R.; Tseng, H.-R.; Heeger, A. J.; Leclerc, M. Polym. Chem. 2013, 4, 1836.
[47] Kim, G.; Han, A. R.; Lee, H. R.; Oh, J. H.; Yang, C. Phys. Chem. Chem. Phys. 2015, 17, 26512.
[48] Lei, T.; Wang, J. Y.; Pei, J. Acc. Chem. Res. 2014, 47, 1117.
[49] Xia, X.; Lei, T.; Pei, J.; Liu, C. Chin. J. Org. Chem. 2014, 34, 1905.
/
〈 |
|
〉 |