综述与进展

有效霉烯胺的化学合成进展

  • 计立 ,
  • 吴国锋 ,
  • 叶伟东 ,
  • 陈新志
展开
  • a 浙江大学化学工程与生物工程学院 杭州 310027;
    b 浙江医药股份有限公司研究院 新昌 312500

收稿日期: 2016-05-11

  修回日期: 2016-07-08

  网络出版日期: 2016-08-10

基金资助

国家自然科学基金(Nos. 21376213,21476194)、教育部高等学校博士学科点专项科研基金(No. 20120101110062)、浙江省博士后科研项目择优(No. BSH1502096)资助项目.

Review of Total Synthesis of Valienamine

  • Ji Li ,
  • Wu Guofeng ,
  • Ye Weidong ,
  • Chen Xinzhi
Expand
  • a College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027;
    b Research & Development Center, Zhejiang Medicine Co., Ltd, Xinchang 312500

Received date: 2016-05-11

  Revised date: 2016-07-08

  Online published: 2016-08-10

Supported by

Project supported by the National Science Foundation of China (Nos. 21376213, 21476194), the Doctoral Program of Higher Education of China (No. 20120101110062), and the Postdoctoral Advanced Programs of Zhejiang Province (No. BSH1502096).

摘要

有效霉烯胺是一种由有效氧胺A经脱氮假单胞菌降解得到的C7N氨基环醇类α-糖苷酶抑制剂,同时也是有效霉素、阿卡波糖等伪寡糖α-糖苷酶抑制剂的核心片段.基于其确定的化学结构和令人感兴趣的生物活性,自从1972年被首次分离后,众多合成化学家设计并完成了各种有效霉烯胺的合成路线.综述了过去三十多年中见于文献报道的有效霉烯胺23条全合成路线.

本文引用格式

计立 , 吴国锋 , 叶伟东 , 陈新志 . 有效霉烯胺的化学合成进展[J]. 有机化学, 2016 , 36(12) : 2771 -2785 . DOI: 10.6023/cjoc201605015

Abstract

Valienamine is an α-glucosidase inhibitor belonging to C7N aminocyclitols that was isolated from the microbial degradation of validoxylamine A with Pseudomonas denitrificans. Moreover, valienamine is also an essential core unit in many kinds of pseudo-oligosaccharidic α-D-glucosidase inhibitors such as validamycins and acarbose. Due to the unique structural feature and interesting biological property, since the first isolation in 1972, a great deal of effort has been devoted to the development of various approaches for the efficient synthesis of valienamine. This review summarizes the 23 synthetic approaches towards valienamine reported in the last thirty years.

参考文献

[1] Delgado, A. Eur. J. Org. Chem. 2008, 3893.
[2] Diaz, L.; Delgado, A. Curr. Med. Chem. 2010, 17, 2393.
[3] Arjona, O.; Gómez, A. M.; López, J. C.; Plumet, J. Chem. Rev. 2007, 107, 1919.
[4] Mahmud, T. Nat. Prod. Rep. 2003, 20, 137.
[5] Kameda, Y.; Horii, S. J. Chem. Soc., Chem. Commun. 1972, 1972, 746.
[6] Kamiya, K.; Wada, Y.; Horii, S.; Nishikawa, M. J. Antibiot. 1971, 24, 317.
[7] Fukase, H.; Horii, S. J. Org. Chem. 1992, 57, 3651.
[8] Chen, X. L.; Zheng, Y. G.; Shen, Y. C. Curr. Med. Chem. 2006, 13, 109.
[9] Chen, X. L.; Fan, Y. X.; Zheng, Y. G.; Shen, Y. C. Chem. Rev. 2003, 103, 1955.
[10] Fukuhara, K.; Murai, H.; Murao, S. Agric. Biol. Chem. 1982, 46, 2021.
[11] Truscheit, E.; Frommer, W.; Junge, B.; Müller, L.; Schmidt, D. D.; Wingender, W. Angew. Chem., Int. Ed. Engl. 1981, 20, 744.
[12] Kameda, Y.; Asano, N.; Yoshikawa, M.; Matsui, K. J. Antibiot. 1980, 33, 1575.
[13] Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yama-guchi, T.; Matsui, K.; Horii, S.; Fukase, H. J. Antibiot. 1984, 37, 1301.
[14] Horii, S.; Fukase, H.; Kameda, Y. Carbohydr. Res. 1985, 140, 185.
[15] Ji, L.; Zhang, D.-F.; Zhao, Q.; Hu, S.-M.; Qian, C.; Chen, X.-Z. Tetrahedron 2013, 69, 7031.
[16] Tanaka, K. S.; Winters, G. C.; Batchelor, R. J.; Einstein, F. W.; Bennet, A. J. J. Am. Chem. Soc. 2001, 123, 998.
[17] Wang, Y.; Bennet, A. J. Org. Biomol. Chem. 2007, 5, 1731.
[18] Horii, S.; Iwasa, T.; Kameda, Y. J. Antibiot. 1971, 24, 57.
[19] Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779.
[20] Ji, L.; Zhou, G.-Q.; Qian, C.; Chen, X.-Z. Eur. J. Org. Chem. 2014, 3622.
[21] Paulsen, H.; Heiker, F. R. Angew. Chem., Int. Ed. Engl. 1980, 19, 904.
[22] Knapp, S.; Naughton, A. B. J.; Dhar, T. G. M. Tetrahedron Lett. 1992, 33, 1025.
[23] Shing, T. K.; Li, T. Y.; Kok, S. H.-L. J. Org. Chem. 1999, 64, 1941.
[24] Kok, S. H.-L.; Lee, C. C.; Shing, T. K. M. J. Org. Chem. 2001, 66, 7184.
[25] Mondal, S.; Prathap, A.; Sureshan, K. M. J. Org. Chem. 2013, 78, 7690.
[26] Nie, L.-D.; Shi, X.-X.; Ko, K. H.; Lu, W.-D. J. Org. Chem. 2009, 74, 3970.
[27] Quan, N.; Nie, L.; Shi, X.; Zhu, R.; Lü, X. Chin. J. Chem. 2012, 30, 2759.
[28] Quan, N.; Nie, L. D.; Zhu, R. H.; Shi, X. X.; Ding, W.; Lu, X. Eur. J. Org. Chem. 2013, 6389.
[29] Ding, W.; Yu, J. P.; Shi, X. X.; Nie, L. D.; Quan, N.; Li, F. L. Tetrahedron:Asymmetry 2015, 26, 1037.
[30] Ogawa, S.; Toyokuni, T.; Suami, T. Chem. Lett. 1980, 9, 713.
[31] Toyokuni, T.; Ogawa, S.; Suami, T. Bull. Chem. Soc. Jpn. 1983, 56, 1161.
[32] Ogawa, S.; Shibata, Y.; Nose, T.; Suami, T. Bull. Chem. Soc. Jpn. 1985, 58, 3387.
[33] Trost, B. M.; Chupak, L. S.; Lubbers, T. J. Am. Chem. Soc. 1998, 120, 1732.
[34] Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
[35] Schmidt, R. R.; Köhn, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 482.
[36] Nicotra, F.; Panza, L.; Ronchetti, F.; Russo, G. Gazz. Chim. Ital. 1989, 119, 577.
[37] Park, T. K.; Danishefsky, S. J. Tetrahedron Lett. 1994, 35, 2667.
[38] Chang, Y.-K.; Lo, H.-J.; Yan, T.-H. Org. Lett. 2009, 11, 4278.
[39] Yoshikawa, M.; Cha, B. C.; Nakae, T.; Kitagawa, I. Chem. Pharm. Bull. 1988, 36, 3714.
[40] Yoshikawa, M.; Cha, B. C.; Okaichi, Y.; Takinami, Y.; Yokokawa, Y.; Kitagawa, I. Chem. Pharm. Bull. 1988, 36, 4236.
[41] Shing, T. K.; Chen, Y.; Ng, W. Synlett 2011, 1318.
[42] Shing, T. K. M.; Chen, Y.; Ng, W.-L. Tetrahedron 2011, 67, 6001.
[43] Tatsuta, K.; Mukai, H.; Takahashi, M. J. Antibiot. 2000, 53, 430.
[44] Zhou, B.; Luo, Z.; Lin, S.; Li, Y. C. Synlett 2012, 913.
[45] Plumet, J.; Gomez, A. M.; Lopez, J. C. Mini-Rev. Org. Chem. 2007, 4, 201.
[46] Kapferer, P.; Sarabia, F.; Vasella, A. Helv. Chim. Acta 1999, 82, 645.
[47] Chang, Y.-K.; Lee, B.-Y.; Kim, D. J.; Lee, G. S.; Jeon, H. B.; Kim, K. S. J. Org. Chem. 2005, 70, 3299.
[48] Cumpstey, I. Tetrahedron Lett. 2005, 46, 6257.
[49] Cumpstey, I.; Gehrke, S.; Erfan, S.; Cribiu, R. Carbohydr. Res. 2008, 343, 1675.
[50] Li, Q. R.; Kim, S. I.; Park, S. J.; Yang, H. R.; Baek, A. R.; Kim, I. S.; Jung, Y. H. Tetrahedron 2013, 69, 10384.
[51] Lo, H.-J.; Chen, C.-Y.; Zheng, W.-L.; Yeh, S.-M.; Yan, T.-H. Eur. J. Org. Chem. 2012, 2780.
[52] Krishna, P. R.; Reddy, P. S. Synlett 2009, 209.

文章导航

/