综述与进展

过渡金属氢化物在CO2活化和功能化反应中的应用

  • 仉花 ,
  • 孙宏建 ,
  • 李晓燕
展开
  • 山东大学化学与化工学院 教育部特种功能聚集体材料重点实验室 济南 250199

收稿日期: 2016-05-20

  修回日期: 2016-07-19

  网络出版日期: 2016-08-12

基金资助

国家自然科学基金(No. 21372143)资助项目.

Application of Transition Metal Hydrides in the Activation and Functionalization of CO2

  • Zhang Hua ,
  • Sun Hongjian ,
  • Li Xiaoyan
Expand
  • School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250199

Received date: 2016-05-20

  Revised date: 2016-07-19

  Online published: 2016-08-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372143).

摘要

综述了Fe、Ru、Ir和Ni等过渡金属的氢化物在CO2活化、氢化、硼氢化和硅氢化反应中的应用,重点阐述了CO2氢化、硼氢化和硅氢化反应的反应机理及反应条件的优化.

本文引用格式

仉花 , 孙宏建 , 李晓燕 . 过渡金属氢化物在CO2活化和功能化反应中的应用[J]. 有机化学, 2016 , 36(12) : 2843 -2857 . DOI: 10.6023/cjoc201605037

Abstract

The application of transition metal hydrides, such as hydrides of Fe, Ru, Ir and Ni, in the activation, hydrogenation, hydroboration and hydrosilation of CO2 is reported. And the mechanism and the reaction conditions of hydrogenation, hydrob-oration and hydrosilation of CO2 are described especially.

参考文献

[1] Ginsberg, A. Transition Metal Chem. 1965, 1, 111.
[2] Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M. Chin. J. Org. Chem. 2014, 34, 2172(in Chinese).(李发旺, 索全伶, 洪海龙, 竺宁, 王亚琪, 韩利民, 有机化学, 2014, 34, 2172.)
[3] Li, X. D.; L, X. D.; Song, Q. W.; Guo, Y. K.; He, L. N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese).(李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年, 有机化学, 2016, 36, 744.)
[4] Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.
[5] Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
[6] Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
[7] Zhang, S.; Li, X. D.; He, L. N. Acta Chim. Sinica 2016, 74, 17(in Chinese).(张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
[8] Zhang, Y. N.; Li, J. L.; Huang, X. R. Chem. J. Chin. Univ. 2016, 37, 534(in Chinese).(张英男, 李吉来, 黄旭日, 高等学校化学学报, 2016, 37, 534.)
[9] Davies, C. J. E.; Lowe, J. P.; Mahon, M. F.; Poulten, R. C.; Whittlesey, M. K. Organometallics 2013, 32, 4927.
[10] Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 5500.
[11] Dobereiner, G. E.; Wu, J.; Manas, M. G.; Schley, N. D.; Takase, M. K.; Crabtree, R. H.; Hazari, N.; Maseras, F.; Nova, A. Inorg. Chem. 2012, 51, 9683.
[12] Laird, M. F.; Pink, M.; Tsvetkov, N. P.; Fan, H.; Gaulton, K. G. Dalton Trans. 2009, 1283.
[13] Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
[14] Johansson, R.; F. Wendt, O. Organometallics 2007, 26, 2426.
[15] Tang, S. Y.; Rijs, N. J.; Li, J.; Schlangen, M.; Schwarz, H. Chem.-Eur. J. 2015, 21, 8483.
[16] Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021.
[17] Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[18] Hou, C.; Jiang, J. X.; Zhang, S. D.; Wang, G.; Zhang, Z. H.; Ke, Z. F.; Zhao, C. Y. ACS Catal. 2014, 4, 2990.
[19] Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Bernskoetter, W. H.; Mercado, B. Q.; Hazari, N. Chem. Sci. 2015, 6, 4291.
[20] Chakraborty, S.; Blacque, O.; Berke, H. Dalton Trans. 2015, 6560.
[21] Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. Inorg. Chem. 2004, 43, 3341.
[22] Gilbertson, J. D.; Szymczak, N. K.; Crossland, J. L.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis, J.; Tyler, D. R. Inorg. Chem. 2007, 46, 1205.
[23] Lee, Y.; Kinney, R. A.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 16366.
[24] Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Inorg. Chem. 2015, 54, 4526.
[25] Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 2412.
[26] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840.
[27] Filonenko, G.; van Putten, R.; Schulpen, E.; Hensen, E.; Pidko, E. ChemCatChem 2014, 6, 1526.
[28] Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. V.; Englert, U.; Holscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.
[29] Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
[30] Ni, S. F.; Dang, L. Phys. Chem. Chem. Phys. 2016, 18, 4860.
[31] Ryo, T.; Makoto, Y.; Kyoko, N. J. Am. Chem. Soc. 2009, 131, 14168.
[32] Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.
[33] Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C. M. J. Am. Chem. Soc. 1997, 119, 840.
[34] Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
[35] Jin, G.; Werncke, C. G.; Escudie, Y.; Sabo-Etienne, S.; Bon-temps, S. J. Am. Chem. Soc. 2015, 137, 9563.
[36] Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron 2012, 32, 30.
[37] Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
[38] Gonzalez-Sebastian, L.; Flores-Alamo, M.; J. Garcia, J. Organometallics 2013, 32, 7186.
[39] Motokura, K.; Kashiwame, D.; Miyaji, A; Baba, T. Org. Lett. 2012, 14, 2462.
[40] Huang, K.; Sun, C. L.; Shi, Z. J. Chem. Soc. Rev. 2011, 40, 2435.

文章导航

/