综述与进展

分离友好的Mitsunobu反应研究进展

  • 戚娜 ,
  • 郭键 ,
  • 贺耘
展开
  • 重庆大学药学院 创新药物研究中心 重庆 401331

收稿日期: 2016-06-20

  修回日期: 2016-07-26

  网络出版日期: 2016-08-12

Progress in Separation-Friendly Mitsunobu Reactions

  • Qi Na ,
  • Guo Jian ,
  • He Yun
Expand
  • School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chonqing University, Chongqing 401331

Received date: 2016-06-20

  Revised date: 2016-07-26

  Online published: 2016-08-12

摘要

Mitsunobu反应由于反应条件温和、立体选择性好,在有机合成及药物化学研究中被广泛应用.同时,由于氧化膦及肼类等副产物的影响,该反应也是有机合成化学中最难纯化的反应之一.简化分离、提高纯化效率是近年来对Mitsunobu反应改进研究的热点方向.综述了近年来各种简化分离的Mitsunobu反应,重点介绍了各种分离策略的原理、优缺点及在Mitsunobu反应中的应用.希望通过对Mitsunobu反应各种分离策略的介绍,加深读者对基于分离策略的有机合成的了解.

本文引用格式

戚娜 , 郭键 , 贺耘 . 分离友好的Mitsunobu反应研究进展[J]. 有机化学, 2016 , 36(12) : 2880 -2887 . DOI: 10.6023/cjoc201606029

Abstract

The Mitsunobu reaction is famous for its mild conditions, good stereoselectivities and extensive applications. But it is also infamous for difficult purification in organic synthetic chemistry, because of the formation of by-products such as phosphine oxide and hydrazine derivatives. To simplify the separation and improve the efficiency of purification is a hot topic in the research of Mitsunobu reaction. Various emerging strategies for product isolation in Mitsunobu reactions are reviewed. Special stress is laid on the principle, advantages and disadvantages of these strategies.

参考文献

[1] Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551.
[2] Mitsunobu, O. Synthesis 1981, 1.
[3] Dandapani, S.; Curran, D. P. Chem. Eur. J. 2004, 10, 3130.
[4] Dembinski, R. Eur. J. Org. Chem. 2004, 2763.
[5] Arnold, L. D.; Assil, H. I.; Vederas, J. C. J. Am. Chem. Soc. 1989, 111, 3973.
[6] Tunoori, A. R.; Dutta, D.; Georg, G. I. Tetrahedron Lett. 1998, 39, 8751.
[7] Jr. Wentworth, P.; Vandersteen, A. M.; Janda, K. D. Chem. Commun. 1997, 759.
[8] Charette, A. B.; Janes, M. K.; Boezio, A. A. J. Org. Chem. 2001, 66, 2178.
[9] Camp, D.; Jenkins, I. D. Aust. J. Chem. 1988, 41, 1835.
[10] Itzstein, M. V.; Mocerino, M. Synth. Commun. 1990, 2049.
[11] Kiankarimi, M.; Lowe, R.; Mccarthy, J. R.; Whitten, J. P. Tetrahedron Lett. 1999, 40, 4497.
[12] Pelletier, J. C.; Kincaid, S. Tetrahedron Lett. 2000, 41, 797.
[13] Starkey, G. W.; Parlow, J. J.; Flynn, D. L. Bioorg. Med. Chem. Lett. 1998, 8, 2385.
[14] Yoakim, C.; Guse, I.; O'Meara, J. A.; Thavonekham, B. Synlett 2003, 473.
[15] Jackson, T.; Routledge, A. Tetrahedron Lett. 2003, 44, 1305.
[16] Dobbs, A. P.; Mcgregor-Johnson, C. Tetrahedron Lett. 2002, 43, 2807.
[17] Dandapani, S.; Curran, D. P. Tetrahedron 2002, 58, 3855.
[18] Dandapani, S.; Curran, D. P. J. Org. Chem. 2004, 69, 8751.
[19] Chu, Q.; Henry, C.; Curran, D. P. Org. Lett. 2008, 10, 2453.
[20] Barrett, A. G. M.; Roberts, R. S.; Schröder, J. Org. Lett. 2000, 2, 2999.
[21] Harned, A. M.; He, H. S.; Toy, P. H.; Flynn, D. L.; Hanson, P. R. J. Am. Chem. Soc. 2004, 127, 52.
[22] Maity, P. K.; Rolfe, A.; Samarakoon, T. B.; Faisal, S.; Kurtz, R. D.; Long, T. R.; Schätz, A.; Flynn, D. L.; Grass, R. N.; Stark, W. J.; Reiser, O.; Hanson, P. R. Org. Lett. 2011, 13, 8.
[23] Maity, P. K.; Kainz, Q. M.; Faisal, S.; Rolfe, A.; Samarakoon, T. B.; Basha, F. Z.; Reiser, O.; Hanson, P. R. Chem. Commun. 2011, 47, 12524.
[24] Lan, P.; Porco, J. A.; South, M. S.; Parlow, J. J. J. Comb. Chem. 2003, 5, 660.
[25] Sugimura, T.; Hagiya, K. Chem. Lett. 2007, 36, 566.
[26] Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. Tetrahedron 2009, 65, 6109.
[27] Figlus, M.; Wellaway, N.; Cooper, A. W. J.; Sollis, S. L.; Hartley, R. ACS Comb. Sci. 2011, 13, 280.
[28] Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. J. Org. Chem. 2008, 73, 4882.
[29] Yang, J.; Dai, L.; Wang, X.; Chen, Y. Tetrahedron 2011, 67, 1456.
[30] Furkert, D. P.; Breitenbach, B.; Juen, L.; Sroka, I.; Pantin, M.; Brimble, M. A. Eur. J. Org. Chem., 2014, 7806.
[31] Aronov, A. M.; Gelb, M. H. Tetrahedron Lett. 1998, 39, 4947.
[32] Su, S.; Giguere, J. R.; Schaus, S. E.; Porco, Jr., J. Tetrahedron 2004, 60, 8645.
[33] Markowicz, M. W.; Dembinski, R. Org. Lett. 2002, 4, 3785.
[34] Guo, J.; Lu, Y.; Zhang, L.; Ye, X.-S. Synlett 2012, 23, 1696.
[35] Harned, A. M.; Hanson, P. R. Org. Lett. 2002, 4, 1007.
[36] Muramoto, N.; Yoshino, K.; Misaki, T.; Sugimura, T. Synthesis 2013, 45, 931.
[37] But, T. Y. S.; Toy, P. H. J. Am. Chem. Soc. 2006, 128, 9636.
[38] But, T. Y. S.; Lu, J.; Toy, P. H. Synlett 2010, 1115.
[39] Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem., Int. Ed. 2013, 52, 4613.
[40] Buonomo, J. A.; Aldrich, C. C. Angew. Chem., Int. Ed. 2015, 54, 13041.
[41] Hirose, D.; Gazvoda, M.; Kosmrlj, J.; Taniguchi, T. Chem. Sci. 2016, 7, 5148.

文章导航

/