烯酮亚胺盐化学的研究进展
收稿日期: 2016-05-31
修回日期: 2016-08-16
网络出版日期: 2016-08-22
基金资助
国家自然科学基金(No.21502171)、大连理工大学精细化工国家重点实验室开放课题基金(No.KF1512)、浙江省教育厅科研(No.Y201328123)资助项目.
Recent Progress in the Chemistry of Keteniminium Salts
Received date: 2016-05-31
Revised date: 2016-08-16
Online published: 2016-08-22
Supported by
Project supported by the National Natural Science Foundation of China (No.21502171),the State Key Laboratory of Fine Chemicals (No.KF1512) and the Educational Commission of Zhejiang Province (No.Y201328123)
李晓锦 , 孙艳 , 张磊 , 彭勃 . 烯酮亚胺盐化学的研究进展[J]. 有机化学, 2016 , 36(11) : 2530 -2544 . DOI: 10.6023/cjoc201605046
Keteniminium salts are unique heteroallenes. The high electrophility and cumulative double bonds render them versatile reactivity. This paper describes the keteniminium salts formed by electrophilic activation of amides or ynamides with non-metal electrophilic reagents. These keteniminium salts mainly undergo electrophilic addition, eletrophilic substitution, cycloaddition with various nucleophiles. In past few years, the study of keteniminium induced electrophilic rearrangement has progressed rapidly. The newly developed rearrangement transformations are also described here.
[1] (a) Ye, J. T.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
(b) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994.
(c) Ma, S. Chem. Rev. 2005, 105, 2829.
(d) Allen, A. D.; Tidwell, T. D. Chem. Rev. 2013, 113, 7287.
(e) Lu, P.; Wang, Y. G. Chem. Soc. Rev. 2012, 41, 5687.
(f) Alajarin, M.; Marin-Luna, M.; Vidal, A. Eur. J. Org. Chem. 2012, 5637.
(g) Lu, P.; Wang, Y. G. Synlett 2010, 165.
[2] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 619.
[3] (a) Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 4814.
(b) Denmark, S. E.; Wilson, T. W. Angew. Chem., Int. Ed. 2012, 51, 9980.
[4] Alajarín, M.; Vidal, A.; Ortín, M. M. Org. Biomol. Chem. 2003, 1, 4282.
[5] (a) Amold, B.; Regitz, M. Angew. Chem., Int. Ed. 1979, 18, 320.
(b) Alajarín, M.; Sánchez-Andrada, P.; Vidal, A.; Tovar, F. Eur. J. Org. Chem. 2004, 2636.
[6] (a) Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1991, 56, 4008.
(b) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.; Wang, Y. G. J. Org. Chem. 2008, 73, 3928.
[7] (a) Alajarín, M.; Bonillo, B.; Ortín, M. M.; Sánchez-Andrada, P.; Vidal, A. Org. Lett. 2006, 8, 5645.
(b) Alajarín, M.; Bonillo, B.; Sánchez-Andrada, P.; Vidal, A. Bautista, D. Org. Lett. 2009, 11, 1365.
[8] Snider, B. B. Chem. Rev. 1988, 88, 793.
[9] Dekorver, K. A.; Li, H.-Y.; Lohse, A. G.; Hayashi, R.; Lu, Z.-J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[10] (a) Madelaine, C.; Valerio, V.; Maulide, N. Chem. Asian J. 2011, 6, 2224.
(b) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
[11] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2869.
[12] (a) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694.
(b) Xiao, K.; Wang, A.; Huang, P. Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
(c) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
[13] Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.
[14] Rens, M.; Ghosez, L. Tetrahedron Lett. 1970, 11, 3765.
[15] Yashi, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 40.
[16] Xu, S.-J.; Liu, J.-Q.; Hu, D.-H.; Bi, X.-H. Green. Chem. 2015, 17, 184.
[17] Compain, G.; Jouvin, K.; Martin-Mingot, A.; Evano, G.; Marrot, J.; Thibaudeau, S. Chem. Commun. 2012, 48, 5196.
[18] Métayer, B.; Compain, G.; Jouvin, K.; Martin-Mingot, A.; Bachmann, C.; Marrot, J.; Evano, G.; Thibaudeau, S. J. Org. Chem. 2015, 80, 3397.
[19] Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348.
[20] Tona, V.; Ruider, S. A.; Berger, M.; Shaaban, S.; Padmanaban, M.; Xie, L.-G.; González, L.; Maulide, N. Chem. Sci. 2016, 7, 6032.
[21] Theunissen, C.; Métayer, B.; Henry, N.; Compain, G.; Marrot, J.; Martin-Mingot, A.; Thibaudeau, S.; Evano, G. J. Am. Chem. Soc. 2014, 136, 12528.
[22] Lecomte, M.; Evano, G. Angew. Chem., Int. Ed. 2016, 55, 4547.
[23] Ghosez, L. Angew. Chem., Int. Ed. 1972, 11, 852.
[24] (a) Zhang, Y.-S. Tetrahedron Lett. 2005, 46, 6483.
(b) Zhang, Y.-S. Tetrahedron 2006, 62, 3917.
[25] Ghosez, L.; Notte, P.; Bernard-Henriet, C.; Maurin, R. Heterocyles 1981, 15, 1179.
[26] Zhang, Y.-S.; Hsung, R. P.; Zhang, X.-J.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.
[27] Lumbroso, A.; Behra, J.; Kolleth, A.; Dakas, P. Y.; Karadeniz, U.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2015, 56, 6541.
[28] Villedieu-Percheron, J.; Catak, S.; Zurwerra, D.; Staiger, R.; Lachia, M.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 2446.
[29] Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.-I.; Takasu, K. J. Org. Chem. 2015, 80, 957.
[30] (a) Viehe, H. G.; Buijle, R.; Fuks, R.; Merényi, R.; Oth, J. M. F. Angew. Chem., Int. Ed. 1967, 6, 77.
(b) Viehe, H. G. Angew. Chem., Int. Ed. 1967, 6, 767.
[31] Ghosez, L.; Haveaux, B.; Viehe, H. G. Angew. Chem., Int. Ed. 1969, 8, 454.
[32] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2870.
[33] Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L. Angew. Chem., Int. Ed. 1981, 20, 879.
[34] Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920.
[35] Brown, R. C. D.; Bataille, C. J. R.; Bruton, G.; Hinks, J. D.; Swain, N. A. J. Org. Chem. 2001, 66, 6719.
[36] Shim, P.-J.; Kim, H.-D. Tetrahedron Lett. 1998, 39, 9517.
[37] Depré, D.; Chen, L.-Y.; Ghosez, L. Tetrahedron 2003, 59, 6797.
[38] O'Brien, J. M.; Kingsbury, J. S. J. Org. Chem. 2011, 76, 1662.
[39] Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2016, 57, 2697.
[40] (a) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 5147.
(b) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 6721.
[41] Domigo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron 2015, 71, 2421.
[42] Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem. Soc. 2011, 133, 8470.
[43] Ficini, J. Tetrahedron Lett. 1966, 7, 6425.
[44] Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2002, 4, 1383.
[45] Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.
[46] Valerio, V.; Madelaine, C.; Maulide, N. Chem. Eur. J. 2011, 17, 4742.
[47] Peng, B.; O'Donovan, D. H.; Jurberg, I. D.; Maulide, N. Chem. Eur. J. 2012, 18, 16292.
[48] Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968.
[49] Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
[50] Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718
/
〈 |
|
〉 |