综述与进展

烯酮亚胺盐化学的研究进展

  • 李晓锦 ,
  • 孙艳 ,
  • 张磊 ,
  • 彭勃
展开
  • a 浙江师范大学化学与生命科学学院 金华 321004;
    b 大连理工大学精细化工国家重点实验室 大连 116024

收稿日期: 2016-05-31

  修回日期: 2016-08-16

  网络出版日期: 2016-08-22

基金资助

国家自然科学基金(No.21502171)、大连理工大学精细化工国家重点实验室开放课题基金(No.KF1512)、浙江省教育厅科研(No.Y201328123)资助项目.

Recent Progress in the Chemistry of Keteniminium Salts

  • Li Xiaojin ,
  • Sun Yan ,
  • Zhang Lei ,
  • Peng Bo
Expand
  • a College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004;
    b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2016-05-31

  Revised date: 2016-08-16

  Online published: 2016-08-22

Supported by

Project supported by the National Natural Science Foundation of China (No.21502171),the State Key Laboratory of Fine Chemicals (No.KF1512) and the Educational Commission of Zhejiang Province (No.Y201328123)

摘要

烯酮亚胺盐是一类独特的杂联烯,高亲电性以及累积二烯的结构特点赋予了烯酮亚胺盐反应的多样性.介绍了非金属亲电试剂活化酰胺或炔酰胺制备的烯酮亚胺盐.该类烯酮亚胺盐与不同种类的亲核试剂主要发生亲电加成反应、亲电取代反应、环加成反应.近年来,烯酮亚胺盐参与的亲电重排反应得到较大发展,所以将对这一进展作重点介绍.

本文引用格式

李晓锦 , 孙艳 , 张磊 , 彭勃 . 烯酮亚胺盐化学的研究进展[J]. 有机化学, 2016 , 36(11) : 2530 -2544 . DOI: 10.6023/cjoc201605046

Abstract

Keteniminium salts are unique heteroallenes. The high electrophility and cumulative double bonds render them versatile reactivity. This paper describes the keteniminium salts formed by electrophilic activation of amides or ynamides with non-metal electrophilic reagents. These keteniminium salts mainly undergo electrophilic addition, eletrophilic substitution, cycloaddition with various nucleophiles. In past few years, the study of keteniminium induced electrophilic rearrangement has progressed rapidly. The newly developed rearrangement transformations are also described here.

参考文献

[1] (a) Ye, J. T.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
(b) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994.
(c) Ma, S. Chem. Rev. 2005, 105, 2829.
(d) Allen, A. D.; Tidwell, T. D. Chem. Rev. 2013, 113, 7287.
(e) Lu, P.; Wang, Y. G. Chem. Soc. Rev. 2012, 41, 5687.
(f) Alajarin, M.; Marin-Luna, M.; Vidal, A. Eur. J. Org. Chem. 2012, 5637.
(g) Lu, P.; Wang, Y. G. Synlett 2010, 165.
[2] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 619.
[3] (a) Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 4814.
(b) Denmark, S. E.; Wilson, T. W. Angew. Chem., Int. Ed. 2012, 51, 9980.
[4] Alajarín, M.; Vidal, A.; Ortín, M. M. Org. Biomol. Chem. 2003, 1, 4282.
[5] (a) Amold, B.; Regitz, M. Angew. Chem., Int. Ed. 1979, 18, 320.
(b) Alajarín, M.; Sánchez-Andrada, P.; Vidal, A.; Tovar, F. Eur. J. Org. Chem. 2004, 2636.
[6] (a) Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1991, 56, 4008.
(b) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.; Wang, Y. G. J. Org. Chem. 2008, 73, 3928.
[7] (a) Alajarín, M.; Bonillo, B.; Ortín, M. M.; Sánchez-Andrada, P.; Vidal, A. Org. Lett. 2006, 8, 5645.
(b) Alajarín, M.; Bonillo, B.; Sánchez-Andrada, P.; Vidal, A. Bautista, D. Org. Lett. 2009, 11, 1365.
[8] Snider, B. B. Chem. Rev. 1988, 88, 793.
[9] Dekorver, K. A.; Li, H.-Y.; Lohse, A. G.; Hayashi, R.; Lu, Z.-J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[10] (a) Madelaine, C.; Valerio, V.; Maulide, N. Chem. Asian J. 2011, 6, 2224.
(b) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
[11] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2869.
[12] (a) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694.
(b) Xiao, K.; Wang, A.; Huang, P. Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
(c) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
[13] Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.
[14] Rens, M.; Ghosez, L. Tetrahedron Lett. 1970, 11, 3765.
[15] Yashi, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 40.
[16] Xu, S.-J.; Liu, J.-Q.; Hu, D.-H.; Bi, X.-H. Green. Chem. 2015, 17, 184.
[17] Compain, G.; Jouvin, K.; Martin-Mingot, A.; Evano, G.; Marrot, J.; Thibaudeau, S. Chem. Commun. 2012, 48, 5196.
[18] Métayer, B.; Compain, G.; Jouvin, K.; Martin-Mingot, A.; Bachmann, C.; Marrot, J.; Evano, G.; Thibaudeau, S. J. Org. Chem. 2015, 80, 3397.
[19] Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348.
[20] Tona, V.; Ruider, S. A.; Berger, M.; Shaaban, S.; Padmanaban, M.; Xie, L.-G.; González, L.; Maulide, N. Chem. Sci. 2016, 7, 6032.
[21] Theunissen, C.; Métayer, B.; Henry, N.; Compain, G.; Marrot, J.; Martin-Mingot, A.; Thibaudeau, S.; Evano, G. J. Am. Chem. Soc. 2014, 136, 12528.
[22] Lecomte, M.; Evano, G. Angew. Chem., Int. Ed. 2016, 55, 4547.
[23] Ghosez, L. Angew. Chem., Int. Ed. 1972, 11, 852.
[24] (a) Zhang, Y.-S. Tetrahedron Lett. 2005, 46, 6483.
(b) Zhang, Y.-S. Tetrahedron 2006, 62, 3917.
[25] Ghosez, L.; Notte, P.; Bernard-Henriet, C.; Maurin, R. Heterocyles 1981, 15, 1179.
[26] Zhang, Y.-S.; Hsung, R. P.; Zhang, X.-J.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.
[27] Lumbroso, A.; Behra, J.; Kolleth, A.; Dakas, P. Y.; Karadeniz, U.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2015, 56, 6541.
[28] Villedieu-Percheron, J.; Catak, S.; Zurwerra, D.; Staiger, R.; Lachia, M.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 2446.
[29] Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.-I.; Takasu, K. J. Org. Chem. 2015, 80, 957.
[30] (a) Viehe, H. G.; Buijle, R.; Fuks, R.; Merényi, R.; Oth, J. M. F. Angew. Chem., Int. Ed. 1967, 6, 77.
(b) Viehe, H. G. Angew. Chem., Int. Ed. 1967, 6, 767.
[31] Ghosez, L.; Haveaux, B.; Viehe, H. G. Angew. Chem., Int. Ed. 1969, 8, 454.
[32] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2870.
[33] Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L. Angew. Chem., Int. Ed. 1981, 20, 879.
[34] Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920.
[35] Brown, R. C. D.; Bataille, C. J. R.; Bruton, G.; Hinks, J. D.; Swain, N. A. J. Org. Chem. 2001, 66, 6719.
[36] Shim, P.-J.; Kim, H.-D. Tetrahedron Lett. 1998, 39, 9517.
[37] Depré, D.; Chen, L.-Y.; Ghosez, L. Tetrahedron 2003, 59, 6797.
[38] O'Brien, J. M.; Kingsbury, J. S. J. Org. Chem. 2011, 76, 1662.
[39] Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2016, 57, 2697.
[40] (a) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 5147.
(b) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 6721.
[41] Domigo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron 2015, 71, 2421.
[42] Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem. Soc. 2011, 133, 8470.
[43] Ficini, J. Tetrahedron Lett. 1966, 7, 6425.
[44] Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2002, 4, 1383.
[45] Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.
[46] Valerio, V.; Madelaine, C.; Maulide, N. Chem. Eur. J. 2011, 17, 4742.
[47] Peng, B.; O'Donovan, D. H.; Jurberg, I. D.; Maulide, N. Chem. Eur. J. 2012, 18, 16292.
[48] Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968.
[49] Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
[50] Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718

文章导航

/