研究简报

Cu+/I2共同催化的Blaise反应

  • 王嫘 ,
  • 梁玉霞 ,
  • 张宝 ,
  • 冯亚青
展开
  • a 天津大学化工学院 天津 300072;
    b 天津大学 天津化工协同创新中心 天津 300072;
    c 天津市功能精细化学品技术工程中心 天津 300072

收稿日期: 2016-04-21

  修回日期: 2016-07-07

  网络出版日期: 2016-09-06

基金资助

天津市科技创新平台计划(No. 14TXGCCX00017)资助项目.

Blaise Reaction Co-catalyzed by I2 and Cu+

  • Wang Lei ,
  • Liang Yuxia ,
  • Zhang Bao ,
  • Feng Yaqing
Expand
  • a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072;
    b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072;
    c Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300072

Received date: 2016-04-21

  Revised date: 2016-07-07

  Online published: 2016-09-06

Supported by

Project supported by the Innovation Platform Program of Tianjin Science and Technology(No. 14TXGCCX00017).

摘要

以(S)-4-氯-3-三甲基硅氧基丁腈和溴乙酸叔丁酯锌试剂为原料,Cu+或I2单独催化的Blaise反应收率与不使用催化剂的反应相比最高提高了约20%,而两者共同催化下的Blaise反应收率由无催化剂的72.1%提高至97.0%,从机理上对结果进行了合理解释.该项研究为Blaise反应的广泛应用提供了一个高效的方法,为他汀类药物关键中间体尤其是瑞舒伐他汀和阿托伐他汀侧链的合成开发了一条收率高、操作简单的路线,同时为构建C-C键的反应提供了新的参考点.

本文引用格式

王嫘 , 梁玉霞 , 张宝 , 冯亚青 . Cu+/I2共同催化的Blaise反应[J]. 有机化学, 2017 , 37(1) : 209 -212 . DOI: 10.6023/cjoc201604045

Abstract

The yield of Blaise reaction of trimethylsilyl protected(S)-4-chloro-3-hydroxylbutyronitrile with tert-butyl bromo zinc acetate is improved nearly 20% by using Cu+ or I2 as a single catalyst.Interestingly,when Cu+ and I2 were used as the co-catalyst,the reaction yield was further improved from 72.1% to 97.0%.These results,which were reasonably explained via the reaction mechanism,not only indicate that the Blaise reaction can be applied more widely,but also provide a simple route for the preparation of the side chain of rosuvastatin and atorvastatin.Moreover,this optimized Blaise reaction provides a new insight into the C-C bond formation.

参考文献

[1] Zhou, J. P.; Ren, Y. H., M.S. Thesis, East China University of Science and Technology, Shanghai, 2010(in Chinese).(周剑平, 任宇红, 硕士论文, 华东理工大学, 上海, 2010.)
[2] Blaise, E. E. C. R. Hebd. Seances Acad. Sci. 1901, 132, 478.
[3] Hannick, S. M.; Kishi, Y. J. Org. Chem. 1983, 48, 3833.
[4] Cason, J.; Rinehart, K. L. Jr.; Thornton, S. D. Jr. J. Org. Chem. 1953, 1594.
[5] Wang, F. D.; Yue, J. M. Synlett 2005, 2077.
[6] Wu, X.; Rieke, R. D. J. Org. Chem. 1995, 60, 6658.
[7] Rao, H. S. P.; Pdmavathy, K.; Vasantham, K.; Shaik, R. Synth. Commun. 2009, 39, 1825.
[8] Shin, H.; Choi, B. S.; Lee, K. K.; Choi, H. W.; Chang, J. H.; Lee, K. W.; Nam, D. H.; Kim, N. S. Synthesis 2004, 2629.
[9] Weiberth, F. J.; Hall, S. S. J. Org. Chem. 1987, 52, 3901.
[10] Huo, S. Q. Org. Lett. 2003, 5, 423.
[11] O'sullivan, W. I.; Swamer, F. W.; Humphlett, W. J.; Hauser, C. R. J. Org. Chem. 1961, 26, 2306.
[12] Kim, J. H.; Chun, Y. S.; Lee, S. J. Org. Chem. 2013, 78, 11483.
[13] Rao, H. S. P.; Rafi, S.; Padmavathy, K. Tetrahedron 2008, 64, 8037.
[14] Wan, N.W.; Liu, Z. Q.; Xue, F.; Shen, Z. Y.; Zheng, Y. G. ChemCatChem 2015, 7, 2446.

文章导航

/