卤化铵催化氧化磺酰亚胺为哑嗪的方法研究
收稿日期: 2016-06-02
修回日期: 2016-09-08
网络出版日期: 2016-09-12
基金资助
国家自然科学基金(No. 21462056)、贵州省联合基金(No.[2014]7542)、贵州省科技创新团队(No.[2014]4002)、贵州省大学生创新计划(No. 201413653013)、遵义医学院(No. F-627)资助项目.
Study of Oxidation of N-Sulfonylimines into Oxaziridines Catalyzed by Ammonium Halides
Received date: 2016-06-02
Revised date: 2016-09-08
Online published: 2016-09-12
Supported by
Project supported by the National Natural Science Foundation of China(No. 21462056), the Science and Technology Foundation of Guizhou Province(Nos.[2014]7542,[2014]4002), the Education Department of Guizhou Province(No. 201413653013), and the Zunyi Medical University(No. F-627).
姚秋丽 , 黄晓丽 , 蒲家志 , 席先秀 , 方学红 , 赵玲 , 麦有群 , 贺春阳 . 卤化铵催化氧化磺酰亚胺为哑嗪的方法研究[J]. 有机化学, 2017 , 37(1) : 116 -121 . DOI: 10.6023/cjoc201606005
The method of oxidation of N-sulfonylimines to N-sulfonyloxaziridines with m-chloroperbenzoic acid catalyzed by ammonium halides was systematically investigated for the first time.Tetraethylammonium halides(Et4NI or Et4NCl) and tet-ramethylammonium halides(Me4NI,Me4NBr or Me4NCl) were firstly used to catalyze the oxidation of a series of N-sulfonylimines to the corresponding N-sulfonyloxaziridines in excellent yields.The experimental results showed that the alkyl group of the ammonium had significant influence on the reaction,whereas the halide ions had lesser influence on the reaction.Thus the research has provided a simple procedure for the preparation of oxaziradine with excellent yields.
[1] Williamson, K. S.; Michaelis, D. J.; Yoon. T. P. Chem. Rev. 2014, 114, 8016.
[2] Della, S. G.; Lattanzi, A. ACS Catal. 2014, 4, 1234.
[3] Mlochowski, J.; Kubicz, E.; Kloc, K.; Mordarski, M.; Peczynska, W.; Syper, L. Liebigs Ann. Chem. 1988, 455.
[4] Benkovics, T.; Guzei, I. A.; Yoon T. P. Angew. Chem., Int. Ed. 2010, 49, 9153.
[5] Williamson, K. S.; Yoon T. P. J. Am. Chem. Soc. 2010, 132, 4570.
[6] Spencer, W. T. Ⅲ; Levin, M. D.; Frontier, A. J. Org. Lett. 2011, 13, 414.
[7] Schoumacker, S.; Hamelin, O.; Téti, S.; Pécaut, J.; Fontecave, M. J. Org. Chem. 2005, 301.
[8] Armstrong, A.; Challinor, L.; Moir, J. H. Angew. Chem., Int. Ed. 2007, 46, 5369.
[9] Paleo, M. R.; Aurrecoechea, N.; Jung, K.-Y.; Rapoport, H. J. Org. Chem. 2003, 68, 130.
[10] Han, S.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 10768.
[11] Zou, L.; Wang, B.; Mu, H.; Zhang, H.; Song, Y.; Qu, J. Org. Lett. 2013, 15, 3106.
[12] Smith, S. R.; Fallan, C.; Taylor, J. E.; McLennan, R.; Daniels, D. S. B.; Morrill, L. C.; Slawin, A. M. Z.; Smith, A. D. Chem. Eur. J. 2015, 21, 10530.
[13] Panlin, S.; Litao, S.; Song, Y. Chin. J. Chem. 2012, 30, 2688.
[14] Kondoha, A.; Terada, M. Org. Chem. Front. 2015, 2, 801.
[15] Peng, X.; Zhu, Y.; Ramirez, T. A.; Zhao, B.; Shi, Y. Org. Lett. 2011, 13, 5244.
[16] Allen, C. P.; Benkovics, T.; Turek, A. K.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 12560.
[17] Foot, O. F.; Knight, D. W. Chem. Commun. 2000, 975.
[18] Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A. Org. Synth. 1988, 66, 203.
[19] Towson, J. C.; Weismiller, M. C.; Lal, G. S.; Sheppard, A. C.; Kumar, A.; Davis, F. A. Org. Synth. 1990, 69, 158.
[20] Davis, F. A.; Nadir, U. K.; Kluger, E. W. J. Chem. Soc., Chem. Commun. 1977, 25.
[21] Ruano, J. L. G.; Aleman, J.; Fajardo, C.; Parra, A. Org. Lett. 2005, 7(24), 5493.
[22] Chang, J. W. W.; Ton, T. M. U.; Tania, S.; Taylor, P. C.; Chan, P. W. H. Chem. Commun.(Cambridge, U. K.) 2010, 46(6), 922.
[23] Davis, F. A.; Stringer, O. D. J. Org. Chem. 1982, 47, 1774.
[24] Davis, F. A.; Chattopadhyay, S.; Towson, J. C.; Lal, S.; Reddy, T. J. Org. Chem. 1988, 53, 2087.
[25] Murphy, J. A.; Mahesh, M.; McPheators, G.; Anand, R. V.; McGuire, T. M.; Carling, R.; Kennedy, A. R. Org. Lett. 2007, 9, 3233.
[26] El-Dakdouki, M. H.; Adamski, N.; Foster, L.; Hacker, M. P.; Erhardt, P. W. J. Med. Chem. 2011, 54, 8224.
[27] Peng, L.; Chen, C.; Gonzalez, C. R.; Balogh-Nair, V. Int. J. Mol. Sci. 2002, 3, 1145.
[28] Kui, L.; Ohyun, K. Org. Synth. 2009, 86, 212.
[29] Davis, F. A.; Lamendola, J. Jr.; Nadir, U.; Kluger, E. W.; Se-dergran, T. C.; Panunto, T. W.; Billmers, R.; Jenkins, R., Jr.; Turci, I. J.; Watson, W. H.; Chen, J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000.
[30] Chen, D.; Chen, X.; Du, T.; Kong, L.; Zhen, R.; Zhen, S.; Wen, Y.; Zhu, G. Tetrahedron Lett. 2010, 51(39), 5131.
[31] Syu, S.; Lee, Y.; Jang, Y.; Lin, W. J. Org. Chem. 2011, 76(8), 2888.
[32] Jin, T.; Yu, M.; Liu, L.; Zhao, Y.; Li, T. Synth. Commun. 2006, 36(16), 2339.
[33] Jin, T.; Feng, G.; Yang, M.; Li, T. Synth. Commun. 2004, 34(7), 1277.
[34] Jin, T.; Feng, G.; Yang, M.; Li, T. J. Chem. Res., Synop. 2003,(9), 591.
[35] Barbarotto, M.; Geist, J.; Choppin, S.; Colobert, F. Tetrahedron:Asymmetry 2009, 20(24), 2780.
[36] Jain, S. L.; Sharma, V. B.; Sain, B. J. Mol. Catal. A:Chem. 2005, 239(1-2), 92.
[37] Ton, T. M. U. C.; Tania, T. S.; Chang, J. W. W.; Chan, P. W. H. J. Org. Chem. 2011, 76(12), 4894.
[38] Williams, D. R.; Robinson, L. A.; Bawel, S. A. Tetrahedron Lett. 2015, 56(23), 3200.
[39] Lykke, L.; Rodriguez-Escrich, C.; Jorgensen, K. A. J. Am. Chem. Soc. 2011, 133(38), 14932.
[40] Klein, M.; Ugi, I. Z. Naturforsch., B:J. Chem. Sci. 1992, 47(6), 887.
[41] Dong, S.; Liu, X.; Zhu, Y.; He, P.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2013, 135(27), 10026.
[42] Zhang, T.; He, W.; Zhao, X.; Jin, Y. Tetrahedron 2013, 69, 7416.
/
〈 |
|
〉 |