综述与进展

无金属参与苄位C(sp3)—H键不对称直接官能团化研究进展

  • 江欣 ,
  • 王斯顿 ,
  • 郭贵敏 ,
  • 卢贝丽
展开
  • 福建农林大学材料工程学院 福州 350002

收稿日期: 2016-10-08

  修回日期: 2016-12-18

  网络出版日期: 2016-12-21

基金资助

国家自然科学基金(Nos.21402027,21502019)、福建省自然科学基金(No.2015J05046)及福建农林大学杰出青年科研人才计划(No.xjq201503)资助项目.

Recent Development of Metal-Free Direct Asymmetric Functionalization of Benzylic C(sp3)—H Bond

  • Jiang Xin ,
  • Wang Sidun ,
  • Guo Guimin ,
  • Lu Beili
Expand
  • College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002

Received date: 2016-10-08

  Revised date: 2016-12-18

  Online published: 2016-12-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21402027, 21502019), the Natural Science Foundation of Fujian Province (No. 2015J05046), the Chemicals and Science Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (No. xjq201503).

摘要

芳基结构广泛存在于天然产物和生物活性分子中,含芳基的化合物是重要的有机合成中间体. 近年来,基于苄位C(sp3)—H键的不对称直接官能团化能够高立体选择性地引入芳环及杂芳环结构,受到化学家们的广泛关注. 其中有机小分子催化下无金属参与的催化模式具有较好的应用前景. 本综述介绍了几种重要的无金属参与的苄位C(sp3)—H键不对称直接官能团化的反应模式,总结了该领域近年来的主要研究进展.

本文引用格式

江欣 , 王斯顿 , 郭贵敏 , 卢贝丽 . 无金属参与苄位C(sp3)—H键不对称直接官能团化研究进展[J]. 有机化学, 2017 , 37(4) : 841 -857 . DOI: 10.6023/cjoc201610010

Abstract

Compounds containing aryl structures are important organic synthesis intermediates, which are widely present in a large family of natural products and bioactive molecules. In recent years, direct asymmetric functionalization of benzylic C(sp3)—H bond for the efficient construction of arene and hetero-arene motifs with high stereoselectivity has drawn widespread concern from chemical community. Among the various strategies, small molecule-catalyzed metal-free functionalization of benzylic C(sp3)—H bond represents a more challenging but promising transformations. This review is intended to summarize and discuss the most recent advances in this area.

参考文献

[1] (a) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654.
(b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(d) Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343.
(e) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
(f) Wang, M.; Wang, Z.; Shang, M.; Dai, H. Chin. J. Org. Chem. 2015, 35, 570 (in Chinese).
(王明明, 王子潇, 商明, 戴辉雄, 有机化学, 2015, 35, 570.)
(g) Tan, M.; Gu, Y.; Luo, X.; Zhang, P. Chin. J. Org. Chem. 2015, 35, 781 (in Chinese).
(谭明雄, 顾运琼, 罗旭健, 张培, 有机化学, 2015, 35, 781.)
(h) Chen, T.; Zhang, M. Chin. J. Org. Chem. 2015, 35, 813 (in Chinese).
(陈天保, 章明, 有机化学, 2015, 35, 813.)
(i) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235 (in Chinese).
(赵金钵, 张前, 化学学报, 2015, 73, 1235.)
(j) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275 (in Chinese).
(尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)
[2] (a) Davies, H. M. L.; Lian, Y. Acc. Chem. Res. 2012, 45, 923.
(b) Motevalli, S.; Sokeirik, Y.; Ghanem, A. Eur. J. Org. Chem. 2016, 1459.
(c) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(d) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.
[3] (a) Retamosa, M. G.; Matador, E.; Monge, D.; Lassaletta, J. M.; Fernandez, R. Chem. Eur. J. 2016, 22, 13430.
(b) Bulfield, D.; Huber, S. M. Chem. Eur. J. 2016, 22, 14434.
(c) Tanriver, G.; Dedeoglu, B.; Catak, S.; Aviyente, V. Acc. Chem. Res. 2016, 49, 1250.
(d) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 13860.
[4] (a) Zhao, Y.-L.; Wang, Y.; Luo, Y.-C.; Fu, X.-Z.; Xu, P.-F. Tetrahedron Lett. 2015, 56, 3703.
(b) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173 (c) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.
[5] (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
(b) Stockerla, S.; Mancheño, O. G. Org. Chem. Front. 2016, 3, 277.
(c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Chem. Soc. 2003, 125, 15312.
[6] Benfatti, F.; Capdevila, M. G.; Zoli, L.; Benedetto, E.; Cozzi, P. G. Chem. Commun. 2009, 5919.
[7] Ho, X.-H.; Mho, S.; Kang, H.; Jang, H.-Y. Eur. J. Org. Chem. 2010, 4436.
[8] Zhang, B.; Xiang, S.-K.; Zhang, L.-H.; Cui, Y.; Jiao, N. Org. Lett. 2011, 13, 5212.
[9] Huang, F.; Xu, L.; Xiao, J. Chin. J. Chem. 2012, 30, 2721.
[10] Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.
[11] Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.
[12] Zhang, G.; Ma, Y.; Wang, S.; Kong, W.; Wang, R. Chem. Sci. 2013, 4, 2645.
[13] Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.
[14] Liu, X.; Meng, Z.; Li, C.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 6012.
[15] Liu, X.; Sun, S.; Meng, Z.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 2396.
[16] Xie, Z.; Zan, X.; Sun, S.; Pan, X.; Liu, L. Org. Lett. 2016, 18, 3944.
[17] (a) Xiao, J. ChemCatChem 2012, 4, 612.
(b) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
[18] Hayashi, Y.; Itoh, T.; Ishikawa, H. Angew. Chem., Int. Ed. 2011, 50, 3920.
[19] Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li, H.; Zhang, X.-S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211.
[20] Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 2977.
[21] Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8588.
[22] Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835.
[23] Fu, Z.; Jiang, K.; Zhu, T.; Torres, J.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 6506.
[24] Jin, Z.; Chen, S.; Wang, Y.; Zheng, P.; Yang, S.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 13506.
[25] Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chem. Eur. J. 2015, 21, 5355.
[26] Wang, M. ChemCatChem 2013, 5, 1291.
[27] Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847.
[28] Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.
[29] Kang, Y. K.; Kim, D. Y. Chem. Commun. 2014, 50, 222.
[30] Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81, 10145.
[31] Williams, R. M.; Rollins, S. B.; Judd, T. C. Tetrahedron 2000, 56, 521.
[32] Liu, Y.; Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 15212.
[33] Liu, Y.; Nappi, M.; Escudero-Adán, E. C.; Melchiorre, P. Org. Lett. 2012, 14, 1310.
[34] Xiao, Y.-C.; Zhou, Q.-Q.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2012, 14, 5940.
[35] Li, T.; Zhu, J.; Wu, D.; Li, X.; Wang, S.; Li, H.; Li, J.; Wang, W. Chem. Eur. J. 2013, 19, 9147.
[36] Dell'Amico, L.; Companyó, X.; Naicker, T.; Bräuer, T. M.; Jørgensen, K. A. Eur. J. Org. Chem. 2013, 5262.
[37] Raja, A.; Hong, B.-C.; Lee, G.-H. Org. Lett. 2014, 16, 5756.
[38] Skrzyńska, A.; Przydacz, A.; Albrecht, ?. Org. Lett. 2015, 17, 5682.
[39] Chen, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 11134.
[40] Xu, J.; Yuan, S.; Miao, M. Org. Lett. 2016, 18, 3822.

文章导航

/