烯烃双卤化加成反应的研究进展
收稿日期: 2016-11-29
修回日期: 2016-12-26
网络出版日期: 2017-01-17
基金资助
浙江省自然科学基金(No.LY17B030011)及嘉兴市科技计划(No.2015AY11014)资助项目.
Recent Advances in Dihalogenation of Alkenes
Received date: 2016-11-29
Revised date: 2016-12-26
Online published: 2017-01-17
Supported by
Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014).
何天雄 , 曾祥华 . 烯烃双卤化加成反应的研究进展[J]. 有机化学, 2017 , 37(4) : 798 -809 . DOI: 10.6023/cjoc201611041
The vicinal dihalogens structure motif can be found in a variety of natural products and pharmaceuticals. The dihalogenation of alkenes is a commonly employed strategy for the rapid construction of carbon-halogen bonds in organic synthesis. In recent years, main progress has been achieved in the dihalogenation of alkenes. Based on our work and research interests, the aim of this review is to give an overview of the progress on the diverse synthetic methodologies of the dihalogenation of alkenes since 2000. Additionally, research trends of this area are also discussed.
Key words: alkene; dihalogenation; synthetic method
[1] For selected representative examples, please see: (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
(b) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
(c) Gribble, G. W. Chemosphere 2003, 52, 289.
[2] (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938.
(b) Chen, J.; Zhou, L. Synthesis 2014, 586.
(c) Cheng, Y. A.; Yu, W. Z.; Yeung, Y. Y. Org. Biomol. Chem. 2014, 12, 2333.
(d) Brucks, A. P.; Treitler, D. S.; Liu, S. A.; Snyder, S. A. Synthesis 2013, 1886.
[3] Gilman, H. Organic Chemistry: An Advanced Treatise, Vol. 1, Wiley, New York, 1938, pp. 36~43.
[4] Cresswell, A. J.; Eey, S. T. C.; Denmark, S. E. Angew. Chem., Int. Ed. 2015, 54, 15642.
[5] Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12946.
[6] Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 4267.
[7] Nakamatsu, S.; Toyota, S.; Jones, W.; Toda, F. Chem. Commun. 2005, 41, 3808.
[8] Koshy, E. P.; Zacharias, J.; Pillai, V. N. R. React. Funct. Polym. 2006, 66, 845.
[9] Primerano, P.; Cordaro, M.; Scala, A. Tetrahedron Lett. 2013, 54, 4061.
[10] Kumar, A.; Jamir, L.; Sinha, U. B. Chem. Sci. Trans. 2014, 3, 480.
[11] Shao, L.-X.; Shi, M. Synlett 2006, 1269.
[12] Zheng, Y.-F.; Yu, J.; Yan, G.-B.; Li, X.; Luo, S. Chin. Chem. Lett. 2011, 22, 1195.
[13] Podgorsek, A.; Eissen, M.; Fleckenstein, J.; Stavber, S.; Zupan, M.; Iskra, J. Green Chem. 2009, 11, 120.
[14] Karki, K.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
[15] Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
[16] Macharla, A. K.; Nappunni, R. C.; Nama, N. Tetrahedron Lett. 2012, 53, 1401.
[17] Wang, G.-W.; Gao, J. Green Chem. 2012, 14, 1125.
[18] Das, P. J.; Sarkar, S. Indian J. Chem. 2013, 52B, 802.
[19] Wang, Y.; Wang, J.; Xiong, Y.; Liu, Z.-Q. Tetrahedron Lett. 2014, 55, 2734.
[20] Zhu, M.; Lin, S.; Zhao, G.-L.; Sun, J.; Córdova, A. Tetrahedron Lett. 2010, 51, 2708.
[21] Xue, H.; Tan, H.; Wei, D.; Wei, Y.; Lin, S.; Liang, F.; Zhao, B. Org. Biomol. Chem. 2013, 11, 5382.
[22] Stodulski, M.; Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50, 3435.
[23] Hernández-Torres, G.; Tan, B.; Barbas III, C. F. Org. Lett. 2012, 14, 1858.
[24] Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.
[25] Landry, M. L.; Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 5150.
[26] Yu, T.-Y.; Wang, Y.; Hu, X.-Q.; Xu, P.-F. Chem. Commun. 2014, 50, 7817.
[27] Yu, T.-Y.; Wei, H.; Luo, Y.-C.; Wang, Y.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2016, 81, 2730.
[28] Iskra, J.; Stavber, S.; Zupan, M. Chem. Commun. 2003, 39, 2496.
[29] Snyder, S. A.; Tang, Z.-Y.; Gupta, R. J. Am. Chem. Soc. 2009, 131, 5744.
[30] Poutsma, M. L. Science 1967, 157, 997.
[31] Liu, X.; Wang, L.; Zou, J. Chin. J. Chem. 2011, 29, 2097.
[32] Kitamura, K.; Tazawa, Y.; Morshed, M. H.; Kobayashi, S. Synthesis 2012, 44, 1159.
[33] Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312.
[34] Swamy, P.; Reddy, M. M.; Kumar, M. A.; Naresh, M.; Narender, N. Synthesis 2014, 46, 251.
[35] Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Org. Biomol. Chem. 2013, 11, 1598.
[36] Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020.
[37] Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134.
[38] Yu, T.-Y.; Wang, Y.; Xu, P.-F. Chem. Eur. J. 2014, 20, 98.
[39] Cresswell, A. J.; Eey S. T.-C.; Denmark, S. E. Nat. Chem. 2015, 7, 146.
[40] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. RSC Adv. 2016, 6, 85182.
[41] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. New J. Chem. 2016, 40, 7866.
[42] Bucher, C.; Deans, R. M.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 12784.
[43] Huang, W.-S.; Chen, L.; Zheng, Z.-J.; Yang, K.-F.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Org. Biomol. Chem. 2016, 14, 7927.
[44] For an indirect method, see: Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872.
[45] Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
[46] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
[47] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.
/
〈 |
|
〉 |