综述与进展

烯烃双卤化加成反应的研究进展

  • 何天雄 ,
  • 曾祥华
展开
  • 嘉兴学院生物与化学工程学院 嘉兴 314001

收稿日期: 2016-11-29

  修回日期: 2016-12-26

  网络出版日期: 2017-01-17

基金资助

浙江省自然科学基金(No.LY17B030011)及嘉兴市科技计划(No.2015AY11014)资助项目.

Recent Advances in Dihalogenation of Alkenes

  • He Tianxiong ,
  • Zeng Xianghua
Expand
  • College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001

Received date: 2016-11-29

  Revised date: 2016-12-26

  Online published: 2017-01-17

Supported by

Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014).

摘要

邻二卤结构单元广泛存在于天然产物和药物分子中,通过烯烃的双卤化加成反应是高效快速合成方法之一. 近年来不断有烯烃双卤化加成的新合成方法研究报道,结合我们小组的研究兴趣和工作,综述了2000年以来烯烃双卤化加成反应方法的进展,并对烯烃双卤化加成反应的发展前景进行了展望.

关键词: 烯烃; 双卤化; 合成方法

本文引用格式

何天雄 , 曾祥华 . 烯烃双卤化加成反应的研究进展[J]. 有机化学, 2017 , 37(4) : 798 -809 . DOI: 10.6023/cjoc201611041

Abstract

The vicinal dihalogens structure motif can be found in a variety of natural products and pharmaceuticals. The dihalogenation of alkenes is a commonly employed strategy for the rapid construction of carbon-halogen bonds in organic synthesis. In recent years, main progress has been achieved in the dihalogenation of alkenes. Based on our work and research interests, the aim of this review is to give an overview of the progress on the diverse synthetic methodologies of the dihalogenation of alkenes since 2000. Additionally, research trends of this area are also discussed.

参考文献

[1] For selected representative examples, please see: (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
(b) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
(c) Gribble, G. W. Chemosphere 2003, 52, 289.
[2] (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938.
(b) Chen, J.; Zhou, L. Synthesis 2014, 586.
(c) Cheng, Y. A.; Yu, W. Z.; Yeung, Y. Y. Org. Biomol. Chem. 2014, 12, 2333.
(d) Brucks, A. P.; Treitler, D. S.; Liu, S. A.; Snyder, S. A. Synthesis 2013, 1886.
[3] Gilman, H. Organic Chemistry: An Advanced Treatise, Vol. 1, Wiley, New York, 1938, pp. 36~43.
[4] Cresswell, A. J.; Eey, S. T. C.; Denmark, S. E. Angew. Chem., Int. Ed. 2015, 54, 15642.
[5] Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12946.
[6] Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 4267.
[7] Nakamatsu, S.; Toyota, S.; Jones, W.; Toda, F. Chem. Commun. 2005, 41, 3808.
[8] Koshy, E. P.; Zacharias, J.; Pillai, V. N. R. React. Funct. Polym. 2006, 66, 845.
[9] Primerano, P.; Cordaro, M.; Scala, A. Tetrahedron Lett. 2013, 54, 4061.
[10] Kumar, A.; Jamir, L.; Sinha, U. B. Chem. Sci. Trans. 2014, 3, 480.
[11] Shao, L.-X.; Shi, M. Synlett 2006, 1269.
[12] Zheng, Y.-F.; Yu, J.; Yan, G.-B.; Li, X.; Luo, S. Chin. Chem. Lett. 2011, 22, 1195.
[13] Podgorsek, A.; Eissen, M.; Fleckenstein, J.; Stavber, S.; Zupan, M.; Iskra, J. Green Chem. 2009, 11, 120.
[14] Karki, K.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
[15] Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
[16] Macharla, A. K.; Nappunni, R. C.; Nama, N. Tetrahedron Lett. 2012, 53, 1401.
[17] Wang, G.-W.; Gao, J. Green Chem. 2012, 14, 1125.
[18] Das, P. J.; Sarkar, S. Indian J. Chem. 2013, 52B, 802.
[19] Wang, Y.; Wang, J.; Xiong, Y.; Liu, Z.-Q. Tetrahedron Lett. 2014, 55, 2734.
[20] Zhu, M.; Lin, S.; Zhao, G.-L.; Sun, J.; Córdova, A. Tetrahedron Lett. 2010, 51, 2708.
[21] Xue, H.; Tan, H.; Wei, D.; Wei, Y.; Lin, S.; Liang, F.; Zhao, B. Org. Biomol. Chem. 2013, 11, 5382.
[22] Stodulski, M.; Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50, 3435.
[23] Hernández-Torres, G.; Tan, B.; Barbas III, C. F. Org. Lett. 2012, 14, 1858.
[24] Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.
[25] Landry, M. L.; Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 5150.
[26] Yu, T.-Y.; Wang, Y.; Hu, X.-Q.; Xu, P.-F. Chem. Commun. 2014, 50, 7817.
[27] Yu, T.-Y.; Wei, H.; Luo, Y.-C.; Wang, Y.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2016, 81, 2730.
[28] Iskra, J.; Stavber, S.; Zupan, M. Chem. Commun. 2003, 39, 2496.
[29] Snyder, S. A.; Tang, Z.-Y.; Gupta, R. J. Am. Chem. Soc. 2009, 131, 5744.
[30] Poutsma, M. L. Science 1967, 157, 997.
[31] Liu, X.; Wang, L.; Zou, J. Chin. J. Chem. 2011, 29, 2097.
[32] Kitamura, K.; Tazawa, Y.; Morshed, M. H.; Kobayashi, S. Synthesis 2012, 44, 1159.
[33] Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312.
[34] Swamy, P.; Reddy, M. M.; Kumar, M. A.; Naresh, M.; Narender, N. Synthesis 2014, 46, 251.
[35] Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Org. Biomol. Chem. 2013, 11, 1598.
[36] Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020.
[37] Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134.
[38] Yu, T.-Y.; Wang, Y.; Xu, P.-F. Chem. Eur. J. 2014, 20, 98.
[39] Cresswell, A. J.; Eey S. T.-C.; Denmark, S. E. Nat. Chem. 2015, 7, 146.
[40] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. RSC Adv. 2016, 6, 85182.
[41] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. New J. Chem. 2016, 40, 7866.
[42] Bucher, C.; Deans, R. M.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 12784.
[43] Huang, W.-S.; Chen, L.; Zheng, Z.-J.; Yang, K.-F.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Org. Biomol. Chem. 2016, 14, 7927.
[44] For an indirect method, see: Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872.
[45] Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
[46] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
[47] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.

文章导航

/