综述与进展

基于钌催化醇类化合物脱氢的C—N/C—C偶联反应的研究进展

  • 曾明 ,
  • 宋婵 ,
  • 崔冬梅
展开
  • 浙江工业大学药学院 杭州 310014

收稿日期: 2017-01-13

  修回日期: 2017-02-20

  网络出版日期: 2017-03-08

Progress in Ruthenium-Catalyzed Dehydrogenation C—C/C—N Bonds Coupling Reactions from Alcohols

  • Zeng Ming ,
  • Song Chan ,
  • Cui Dongmei
Expand
  • College of Pharmceutical Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2017-01-13

  Revised date: 2017-02-20

  Online published: 2017-03-08

摘要

金属钌及其配合物具有氧化、还原等多种催化作用,同时在C—H活化等领域也有广泛的应用,是一种经济高效的催化剂.因此,该催化剂在有机合成中受到了广泛的关注.从基于钌催化醇类化合物脱氢的偶联反应机理的角度对近十年来该催化剂参与醇类化合物的C—N、C—C偶联反应进行了分类和综述,通过从反应机理角度的综述,希望设计出具有创新性的基于钌催化醇类化合物脱氢的C—N、C—C偶联反应.

本文引用格式

曾明 , 宋婵 , 崔冬梅 . 基于钌催化醇类化合物脱氢的C—N/C—C偶联反应的研究进展[J]. 有机化学, 2017 , 37(6) : 1352 -1367 . DOI: 10.6023/cjoc201701027

Abstract

Ruthenium and its complex possess various catalytic activities such as oxidation and reduction. Ruthenium as a cheap and efficient catalyst was also widely used in such field as C—H activation. Considerable attention has been paid to it for its great applications in organic chemistry. The last decade's ruthenium-catalyzed deydrogenation C—N/C—C coupling reactions from acohols classified by their machanisms are summarized in this paper. Creative C—N/C—C coupling reactions are expected be designed by means of dehydrogenation catalyzed by ruthenium from acohols.

参考文献

[1] (a) Li, R.-Q.; Fu, Y.; Liu, L.; Guo, Q.-L. Chin. J. Org. Chem. 2004, 24, 1004 (in Chinese). (李蕊琼, 傅尧, 刘磊, 郭庆祥, 有机化学, 2004, 24, 1004.)
(b) Zhong, Y.-X.; Ren. K.; Xie, X.-M.; Zhang, Z.-G. Chin. J. Org. Chem. 2016, 36, 258 (in Chinese). (钟业辛, 任凯, 谢小敏, 张兆国, 有机化学, 2016, 36, 258.)
(c) Gao, A.-L.; Ye, Q.-S.; Yu, J. Chin. J. Org. Chem. 2017, 37, 47 (in Chinese).(高安丽, 叶青松, 余娟, 有机化学, 2017, 37, 47.)
(d) Wang, Y.-J.; Zhang, Z.-F.; Zhang, W.-B. Chin. J. Org. Chem. 2015, 35, 528 (in Chinese).(王英杰, 张振锋, 张万斌, 有机化学, 2015, 35, 528.)
(e) Du, R.-F.; Tan, X.-H.; Fan, Y.-Q. Acta Chim. Sinica 2016, 74, 503 (in Chinese).(窦镕飞, 谭晓荷, 范义秋, 化学学报, 2016, 74, 503.)
(f) Zuo, X.; Wu, W.-L.; Su, W.-P. Acta Chim. Sinica 2015, 73, 298 (in Chinese).(左璇, 吴文亮, 苏伟平, 化学学报, 2015,73, 298.)
(g) Xu, Y.; Zhang, H.-Z.; Wang, X.-Y.; Liu, G.-Y. Chin. J. Chem. 2015, 33, 1393.
(h) Wang, R.-J.; Jia, P.-F.; Yang, Y.-Y.; An, N.; Zhang, Y.-D.; Wu, H.-Y.; Hu. Z.-A. Chin. J. Chem. 2016, 34, 114.
(i) Liu, Y.-X.; Yang, N.; Chu, C.-H.; Liu, R.-H. Chin. J. Chem. 2015, 33, 1101.
[2] (a) Delgadorebollo, M.; Cansecogonzalez, D.; Hollering, M.; Muellerbunz, H.; Albrecht, M. Dalton Trans. 2014, 43, 4462.
(b) Mastalir, M.; Tomsu, G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Org. Lett. 2016, 18, 3462.
(c) Shiraishi, Y.; Fujiwara, K.; Sugano, Y.; Ichikawa, S.; Hirai, T. ACS Catal. 2013, 3, 312.
(d) Dang, T. T.; Ramalingam, B.; Shan, S. P.; Seayad, A. M. ACS Catal. 2013, 3, 2536.
(e) Zhang, Y.; Qi, X.-J.; Cui, X.-J.; Shi, F.; Deng, Y.-Q. Tetrahedron Lett. 2011, 52, 1334.
(f) Shimizu, K. I.; Shimura, K.; Nishimura, M.; Satsuma, A. RSC Adv. 2011, 1, 1310.
(g) Shimizu, K. I.; Imaiida, N.; Kon, K.; Siddiki, S. M. A. H.; Satsuma, A. ACS Catal. 2013, 3, 998.
(h) Rawlings, A. J.; Diorazio, L. J.; Wills, M. Org. Lett. 2015, 17, 1086.
(i) Bhat, S.; Sridharan, V. Chem. Commun. 2012, 48, 4701.
(j) Yang, Q.; Wang, Q.-F.; Yu, Z.-K. Chem. Soc. Rev. 2015, 44, 2305.
(k) Xiong, B.; Zhang, S.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 18, 724.
[3] (a) Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E. Angew. Chem., Int. Ed. 2015, 54, 11022.
(b) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.
[4] Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.
[5] (a) Patil, N. M.; Kelkar, A. A.; Nabi, Z.; Chaudhari, R. V. Chem. Commun. 2004, 35, 2368.
(b) Hirai, Y.; Uozumi, Y. Chem. Commun. 2010, 46, 1103.
(c) Moghaddam, F. M.; Tavakoli, G.; Moafi, A.; Saberi, V.; Rezvani, H. R. ChemCatChem 2015, 6, 3474.
(d) Li, S.-G.; Deng, G.-J.; Yin, F.-F.; Li, C.-J.; Gong, H. Org. Chem. Front. 2017, 4, 417.
(e) Fairlamb, I. J.; Kapdi, A. R.; Lee, A. F.; Mcglacken, G. P.; Weissburger, F.; de Vries, A. H.; Schmieder-Van, D. V. L. Chem.-Eur. J. 2006, 12, 8750.
(f) Li, J.-X.; Hu, W.-G.; Li, C.-S.; Yang, S.-R.; Wu, W.-Q.; Jiang, H.-F. Org. Chem. Front. 2017, 4, 373.
(g) Barot, N.; Patel, S. B.; Kaur, H. J. Mol. Catal. A: Chem. 2016, 423, 77.
(h) Zhang, C.; Li, T.-L.; Wang, L.-G.; Rao, Y. Org. Chem. Front. 2017, 4, 386.
(i) Dutta, J.; Richmond, M. G.; Bhattacharya, S. Dalton Trans. 2015, 44, 13615.
(j) Lin, W.-H.; Wu, W.-C.; Selvaraju, M.; Sun, C.-M. Org. Chem. Front. 2017, 4, 392.
[6] (a) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Nat. Chem. 2011, 3, 287.
(b) Serk, K. M.; Namdu, K.; Hyeok, S. S.; Soo, P. I.; Kumar, C. R.; Jaiwook, P. Angew. Chem., Int. Ed. 2005, 44, 6913.
(c) Anxionnat, B.; Gomez Pardo, D.; Ricci, G.; Rossen, K.; Cossy, J. Org. Lett. 2013, 15, 3876.
(d) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Angew. Chem., Int. Ed. 2014, 53, 761.
(e) Alonso, F.; Riente, P.; Sirvent, J. A.; Yus, M. Appl. Catal. A 2010, 378, 42.
(f) Fujita, K. I.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
(g) Yu, X.; Wang, Q.-Y.; Wu, Q.-J.; Wang, D.-W. Russ. J. Gen. Chem. 2016, 86, 178.
(h) Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2015, 54, 15046.
(i) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J. Angew. Chem., Int. Ed. 2009, 48, 7375.
(j) Qu, P.-P.; Sun, C.-L.; Ma, J.; Li, F. Adv. Synth. Catal. 2014, 356, 447.
(k) Michlik, S.; Kempe, R. Angew. Chem., Int. Ed. 2013, 52, 6326.
(l) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Adv. Synth. Catal. 2011, 353, 1161.
(m) Wang, R.-Z.; Ma, J.; Li, F. J. Org. Chem. 2015, 80, 10769.
(n) Wang, D.-W.; Zhao, K.-Y.; Xu, C.-Y.; Miao, H.-Y.; Ding, Y.-Q. ACS Catal. 2014, 4, 3910.
(o) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. Chem. Commun. 2010, 46, 1541.
(p) Hille, T.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 371.
(q) Elangovan, S.; Sortais, J. B.; Beller, M.; Darcel, C. Angew. Chem., Int. Ed. 2016, 54, 14483.
(r) Yu, X.-L.; Zhao, R.-R.; Wan, H.-D.; Yang, Y.-C.; Wang, D.-W. Tetrahedron Lett. 2016, 57, 4588.
(s) Yamaguchi, R.; Zhu, M.-W.; Kawagoe, S.; Asai, C.; Fujita, K. I. Synthesis 2009, 1220.
(t) Wang, D.-W.; Zhao, K.-Y.; Yu, X.; Miao, H.-Y.; Ding, Y.-Q. RSC Adv. 2014, 46, 42924.
(u) Saidi, O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.; Taylor, J. E.; Williams, J. M. J. Org. Process Res. Dev. 2010, 14, 1046.
(v) Lu, L.; Ma, J.; Qu, P.-P.; Li, F. Org. Lett. 2015, 17, 2350.
(w) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. Org. Lett. 2008, 10, 181.
(x) Li, F.; Ma, J.; Wang, N. J. Org. Chem. 2014, 46, 10447.
(y) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
(z) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc. 2010, 132, 15108.
(aa) Li, F.; Shan, H.; Chen, L.; Kang, Q.; Zou, P. Chem. Commun. 2011, 43, 603.
(ab) Peña-López, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 14967.
(ac) Elangovan, S.; Neumann, J.; Sortais, J. B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.
(ad) Deibl, N.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 1663.
(ae) Wang, N.-N.; Zou, X.-Y.; Ma, J.; Li, F. Chem. Commun. 2014, 50, 8303.
(af) Michlik, S.; Kempe, R. Nat. Chem. 2013, 5, 140.
[7] Sindhuja, E.; Ramesh, R. Tetrahedron Lett. 2014, 55, 5504.
[8] Tanabe, Y.; Kuriyama, S.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Organometallics 2014, 33, 5295.
[9] Rigoli, J. W.; Moyer, S. A.; Pearce, S. D.; Schomaker, J. M. Org. Biomol. Chem. 2012, 10, 1746.
[10] Bauer, J. O.; Leitus, G.; Ben-David, Y.; Milstein, D. ACS Catal. 2016, 6, 8415.
[11] Kondo, T.; Yang, S.; Huh, K. T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Chem. Lett. 1991, 20, 1275.
[12] Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett. 2009, 11, 2039.
[13] Khalafi-Nezhad, A.; Panahi, F. ACS Catal. 2014, 4, 1686.
[14] Tsuji, Y.; Kotachi, S.; Huh, K. T.; Watanabe, Y. J. Org. Chem. 1990, 55, 580.
[15] Izumi, T.; Yokota, T. J. Heterocycl. Chem. 1992, 29, 1085.
[16] Shimura, S.; Miura, H.; Wada, K.; Hosokawa, S.; Yamazoe, S.; Inoue, M. Catal. Sci. Technol. 2011, 1, 1340.
[17] (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
(b) Martínez, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2008, 73, 9778.
(c) Venkatesan, H.; Hocutt, F. M.; Jones, T. K.; Rabinowitz, M. H. J. Org. Chem. 2010, 75, 3488.
[18] Chen, M.-M.; Zhang, M.; Xiong, B.; Tan, Z.-D.; Lv, W.; Jiang, H.-F. Org. Lett. 2014, 16, 6028.
[19] Monrad, R. N.; Madsen, R. Org. Biomol. Chem. 2011, 9, 610.
[20] Porcheddu, A.; Mura, M. G.; De Luca, L.; Pizzetti, M.; Taddei, M. Org. Lett. 2012, 14, 6112.
[21] Xie, F.; Chen, M.-M.; Wang, X.-T.; Jiang, H.-F.; Zhang, M. Org. Biomol. Chem. 2014, 12, 2761.
[22] Zeng, M.; Wang, T.; Cui, D.-M.; Zhang, C. New J. Chem. 2016, 40, 8225.
[23] Mura, M. G.; De Luca, L.; Taddei, M.; Williams, J. M. J.; Porcheddu, A. Org. Lett. 2014, 16, 2586.
[24] Iida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. 2013, 15, 1436.
[25] (a) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013, 52, 4012.
(b) Srimani, D.; Ben-David, Y.; Milstein, D. Chem. Commun. 2013, 49, 6632.
[26] (a) Zhang, M.; Fang, X. J.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2013, 135, 11384.
(b) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 597.
[27] Pan, B.; Liu, B.; Yue, E.-L.; Liu, Q.-B.; Yang, X.-Z.; Wang, Z.; Sun, W.-H. ACS Catal. 2016, 6, 1247.
[28] (a) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798.
(b) Mcinturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
(c) Zbieg, J. R.; Yamaguchi, E.; Mcinturff, E. L.; Krische, M. J. Science 2012, 336, 324.
[29] Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667.
[30] Watson, A. J. A.; Wakeham, R. J.; Maxwell, A. C.; Williams, J. M. J. Tetrahedron 2014, 70, 3683.
[31] Ortega, N.; Richter, C.; Glorius, F. Org. Lett. 2013, 15, 1776.
[32] Oldenhuis, N. J.; Dong, V. M.; Guan, Z. Tetrahedron 2014, 70, 4213.
[33] Nova, A.; Balcells, D.; Schley, N. D.; Dobereiner, G. E.; Crabtree, R. H.; Eisenstein, O. Organometallics 2010, 29, 6548.
[34] Kim, J.; Hong, S. H. Org. Lett. 2014, 16, 4404.
[35] Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 38, 725.
[36] Hamid, M. H.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J.; Williams, J. M. J. Am. Chem. Soc. 2009, 131, 1766.
[37] Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199.
[38] Bähn, S.; Imm, S.; Mevius, K.; Neubert, L.; Tillack, A.; Williams, J. M. J.; Beller, M. Chem. Eur. J. 2010, 16, 3590.
[39] Imm, S.; Baehn, S.; Zhang, M.; Neubert, L.; Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 7599.
[40] Balaraman, E.; Srimani, D.; Diskin-Posner, Y.; Milstein, D. Catal. Lett. 2014, 145, 139.
[41] Zhang, M.; Imm, S.; Bähn, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11197.
[42] Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328.
[43] Ma, W.-M.; James, T. D.; Williams, J. M. Org. Lett. 2013, 15, 4850.
[44] Chen, M.-M.; Zhang, M.; Xie, F.; Wang, X.-T.; Jiang, H.-F. ChemCatChem 2014, 6, 2993.
[45] Enyong, A. B.; Moasser, B. J. Org. Chem. 2014, 79, 7553.
[46] Broomfield, L. M.; Wu, Y. C.; Martin, E.; Shafir, A. Adv. Synth. Catal. 2015, 357, 3538.
[47] Dang, T.-T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.
[48] Shan, S. P.; Xie, X.-K.; Gnanaprakasam, B.; Dang, T. T.; Ramalingam, B.; Huynh, H. V.; Seayad, A. M. RSC Adv. 2015, 5, 4434.
[49] Rajaraman, A.; Sahoo, A. R.; Hild, F.; Fischmeister, C.; Achard, M.; Bruneau, C. Dalton Trans. 2015, 44, 17467.
[50] ?ahin, Z.; Gürbüz, N.; Özdemir, ?.; ?ahin, O.; Büyükgüngör, O.; Achard, M.; Bruneau, C. Organometallics 2015, 34, 2296.
[51] Marichev, K. O.; Takacs, J. M. ACS Catal. 2016, 6, 2205.
[52] Pagliaro, M.; Rossi, M. The Future of Glycerol, Royal Society of Chemistry, 2010.
[53] Said Stålsmeden, A.; Belmonte Vázquez, J. L.; van Weerdenburg, K.; Rae, R.; Norrby, P.-O.; Kann, N. ACS Sustainable Chem. Eng. 2016, 4, 5730.
[54] Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M. M.; Radnik, J.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.
[55] Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.
[56] Oldenhuis, N. J.; Dong, V. M.; Guan, Z. J. Am. Chem. Soc. 2014, 136, 12548.
[57] Yang, L.-C.; Wang, Y.-N.; Zhang, Y.; Zhao, Y. ACS Catal. 2017, 7, 93.
[58] Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240.
[59] Xiong, B.; Li, Y.; Lv, W.; Tan, Z.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 47, 4054.
[60] Xiong, B.; Zhang, S.-D.; Chen, L.; Li, B.; Jiang, H.-F.; Zhang, M. Chem. Commun. 2016, 52, 10636.
[61] Peña-López, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 7826.
[62] (a) Yang, H.-Q.; Shen, R.; Deng, G.-J. Chin. J. Org. Chem. 2012, 32, 1725 (in Chinese).(杨辉琼, 谌儒, 邓国军, 有机化学, 2012, 32, 1725.)
(b) Neumann, J.; Bornschein, C.; Jiao, H.; Junge, K.; Beller, M. Eur. J. Org. Chem. 2015, 2015, 5944.
[63] Feng, C.; Liu, Y.; Peng, S.-M.; Shuai, Q.; Deng, G.-J.; Li, C.-J. Org. Lett. 2010, 12, 4888.
[64] Li, H.-J.; Wang, C.-C.; Zhu, S.; Dai, C.-Y.; Wu, Y.-C. Adv. Synth. Catal. 2015, 357, 583.
[65] Xie, F.; Zhang, M.; Chen, M.-M.; Lv, W.; Jiang, H.-F. ChemCatChem 2015, 7, 349.
[66] Xie, F.; Zhang, M.; Jiang, H.-F.; Chen, M.-M.; Lv, W.; Zheng, A.-B.; Jian, X.-J. Green Chem. 2015, 17, 279.
[67] Deibl, N.; Kempe, R. J. Am. Chem. Soc. 2016, 138, 10786.
[68] Cho, C. S.; Kim, B. T.; Kim, T.-J.; Chul Shim, S. Tetrahedron Lett. 2002, 43, 7987.
[69] Yan, F.-X.; Zhang, M.; Wang, X.-T.; Xie, F.; Chen, M.-M.; Jiang, H.-F. Tetrahedron 2014, 70, 1193.
[70] Kuwahara, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14, 4703.
[71] Kuwahara, T.; Fukuyama, T.; Ryu, I. RSC Adv. 2013, 3, 13702.
[72] Schlepphorst, C.; Maji, B.; Glorius, F. ACS Catal. 2016, 6, 4184.
[73] Chaudhari, M. B.; Bisht, G. S.; Kumari, P.; Gnanaprakasam, B. Org. Biomol. Chem. 2016, 14, 9215.
[74] Cini, E.; Petricci, E.; Truglio, G. I.; Vecchio, M.; Taddei, M. RSC Adv. 2016, 6, 31386.
[75] Sik Cho, C.; Kim, B. T.; Taejeong Kim, A.; Sang, C. S. J. Org. Chem. 2001, 66, 9020.
[76] Li, Y.; Li, H. Q.; Junge, H.; Beller, M. Chem. Commun. 2014, 50, 14991.
[77] Wang, Q.-F.; Wu, K.-K.; Yu, Z.-K. Organometallics 2016, 35, 1251.
[78] Chakrabarti, K.; Paul, B.; Maji, M.; Roy, B. C.; Shee, S.; Kundu, S. Org. Biomol. Chem. 2016, 14, 10988.
[79] Takashi, A. M. J.; Takahide, F.; Ilhyong, R. Chem. Lett. 2013, 42, 1163.
[80] Pena-Lopez, M.; Neumann, H.; Beller, M. Chem. Commun. 2015, 51, 13082.

文章导航

/