研究简报

镍催化格氏试剂与二芳基乙炔偶联反应制备四取代萘

  • 陈锦杨 ,
  • 吴小波 ,
  • 易荣楠 ,
  • 许新华
展开
  • a. 湖南大学化学化工学院 长沙 410082;
    b. 湖北省纤维检验局 武汉 420100

收稿日期: 2016-12-24

  修回日期: 2017-02-21

  网络出版日期: 2017-03-14

基金资助

湖南省科技重大专项基金(No.2014FJ1010)资助项目.

Nickel-Catalyzed Coupling of Grignard Reagents and Diaryl Acetylenes for Synthesis of Tetra-substituted Naphthalenes

  • Chen Jinyang ,
  • Wu Xiaobo ,
  • Yi Rongnan ,
  • Xu Xinxua
Expand
  • a. College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082;
    b. Fiber Inspection Bureau of Hubei Province, Wuhan 420100

Received date: 2016-12-24

  Revised date: 2017-02-21

  Online published: 2017-03-14

Supported by

Project supported by the Hunan Provincal Science and Technology Major Projects (No.2014FJ1010).

摘要

报道了一个新颖的方法来制备四取代萘化物,该方法通过NiCl2催化下的二芳基乙炔与格氏试剂的无配体偶联反应实现.该方法避免了已有方法中的特殊配体和昂贵催化剂的使用.此外,本方法还具有反应条件温和,产率高,底物适用范围广等优点,为多取代萘的制备提供了一个有效的方法.

本文引用格式

陈锦杨 , 吴小波 , 易荣楠 , 许新华 . 镍催化格氏试剂与二芳基乙炔偶联反应制备四取代萘[J]. 有机化学, 2017 , 37(7) : 1850 -1854 . DOI: 10.6023/cjoc201612057

Abstract

A novel approach for the synthesis of tetra-substituted naphthalenes is demonstrated through the ligand-free coupling of a wide range of alkynes with Grignard reagents catalyzed by NiCl2, avoiding the use of special ligands and expensive catalysts used in previous methods. Other outstanding features include mild reaction conditions, good yields and wide functional group tolerance. The protocol provides an efficient method for the synthesis of highly substituted naphthalenes.

参考文献

[1] Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098
[2] Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452.
[3] Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489.
[4] Zhang, J. L.; Xiao, C.; Zhai, L. J.; Wang, X. J.; Bi, F. Q.; Wang, B. Z. Chin. J. Org. Chem. 2016, 36, 1197(in Chinese). (张俊林, 肖川, 翟连杰, 王锡杰, 毕福强, 王伯周, 有机化学, 2016, 36, 1197.)
[5] Wu, J.; Kong, H. H.; Ding, M. W. Chin. J. Org. Chem. 2016, 36, 1662(in Chinese). (武静, 孔晗晗, 丁明武, 有机化学, 2016, 36, 1662.)
[6] Yang, R.; Cai, X. D.; Ding, L. M. Acta Chim. Sinica 2015, 73, 281(in Chinese). (杨瑞, 蔡雪刁, 丁黎明, 化学学报, 2015, 73, 281.)
[7] Ge, T.; Song, J.; yYao, Z. G.; Xu, F. Chin. J. Org. Chem. 2015, 35, 1570(in Chinese). (葛恬, 宋洁, 姚志刚, 徐凡, 有机化学, 2015, 35, 1570.)
[8] Gong, X.; Xie, X.; Chen, N.; Zheng, C.; Zhu, J.; Chen, R.; Huang, W.; Gao, D. Chin. J. Chem. 2015, 33, 967.
[9] Wang, L.; Wang, L.; Huang, J.; Yu, G. Chin. J. Chem. 2015, 33, 948.
[10] Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
[11] Narasimhan, N. S.; Bapat, C. P. J. Chem. Soc., Perkin Trans. 11984, 1435.
[12] Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.
[13] Murphy, A. R.; Frechet, J. M. J. Chem. Rev. 2007, 107, 1066.
[14] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
[15] Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533
[16] Someya, T.; Katz, H. E.; Gelperin, A.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett. 2002, 81, 3079.
[17] Katz, H. E.; Bao, Z. J. Phys. Chem. B 2000, 104, 671.
[18] Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891.
[19] Kaur, I.; Stein, N. N.; Kopreski, R. P.; Miller, G. P. J. Am. Chem. Soc 2009, 131, 3424.
[20] Ahmed, E.; Briseno, A. L.; Xia, Y.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130, 1118.
[21] Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 2867.
[22] Takahashi. T.; Li, Y.; Stepnicja, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 576.
[23] Umeda, N.; Tsurugi, H.; Satoh, T.; Miera, M. Angew. Chem., Int. Ed. 2008, 47, 4019.
[24] Takahashi, T.; Kitamura, M.; Shen, B.; Nakajima, K. J. Am. Chem. Soc. 2000, 122, 12876.
[25] Bennett, M. A.; Hockless, C. R.; Wenger, E. Organometallics 1995, 14, 2091.
[26] Bowles, D. M.; Anthony, J. E. Org. Lett. 2000, 2, 85.
[27] Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 6836.
[28] Hsieh, J-C.; Cheng, C-H. Chem. Commun. 2008, 2992.
[29] Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 5198.
[30] Uto, T.; Shimazu, M.; Ueura, K.; Tsurugi, H.; Satoh, T.; Miura, M. J. Org. Chem. 2008, 73, 298.
[31] Geng, K.; Fan, Z.; Zhang, A. Org. Chem. Front. 2016, 3, 349.
[32] Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
[33] Jafarpour, F.; Hazrati, H.; Nouraldinmousa, S. Org. Lett. 2013, 15, 3816.
[34] Cant, A. A.; Roberts, L.; Greaney, M. F. Chem. Commun. 2010, 46, 8671.
[35] Adak, L.; Yoshikai, N. Tetrahedron 2012, 68, 5167.
[36] Ilies, L.; Matsumoto, A.; Kobayashi, M.; Yoshikai, N.; Nakamura, E. Synlett 2012, 23, 2381.
[37] Thakur, K. G.; Sekar, G. Synthesis 2009, 16, 2785.
[38] Wu, Y.-T.; Huang, K.-H.; Shin, C.-C.; Wu, T.-C. Chem.-Eur. J. 2008, 14, 6697.

文章导航

/