综述与进展

二氧化碳参与的环化反应最新研究进展

展开
  • 大连理工大学精细化工国家重点实验室 大连 116024

收稿日期: 2017-01-14

  修回日期: 2017-03-19

  网络出版日期: 2017-04-01

基金资助

中央高校基本科研业务费专项资金(No.DUT15LAB21)和教育部长江学者与创新团队发展计划(Nos.T2011056,IRT13008)资助项目.

Recent Progress in the Cyclization Reactions Using Carbon Dioxide

Expand
  • State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2017-01-14

  Revised date: 2017-03-19

  Online published: 2017-04-01

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. DUT15LAB21) and the Program for Changjiang Scholars and Innovative Research Team in University (Nos. T2011056, IRT13008).

摘要

二氧化碳是一种储量丰富且廉价易得的可再生碳一资源.将二氧化碳高效转化成高附加值化学品的有机合成方法学研究目前已经成为最为活跃的研究方向之一.由于环化反应种类的多样性以及环化产物在众多生物活性分子结构中的广谱性,二氧化碳参与的环化反应也深受广大研究者重视.综述了最近二氧化碳参与的环化新反应合成内酰胺、内酯、邻苯二甲酰亚胺、环状酸酐、苯并噻唑及苯并咪唑等杂环化合物,同时也介绍了一些二氧化碳作为反应底物但不参与成环过程合成环状羧酸的新反应.

本文引用格式

张文珍, 张宁, 郭春晓, 吕小兵 . 二氧化碳参与的环化反应最新研究进展[J]. 有机化学, 2017 , 37(6) : 1309 -1321 . DOI: 10.6023/cjoc201701031

Abstract

Carbon dioxide is a cheap, abundant and renewable C1 feedstock. Methodology study on the transformation of carbon dioxide into highly value-added chemicals has become one of the most active topics in organic chemistry. Owing to the diversity of cyclization reaction and vast occurrence of various heterocyclic motifs in biologically important molecules, the cyclization reactions using carbon dioxide have gained much attention. This review therefore aims to principally describe the recent progress in the new cyclization reactions using carbon dioxide as feedstock to synthesize lactams, lactones, cyclic anhydrides, benzothiazoles, benzimidazoles and other heterocyclic compounds.

参考文献

[1] Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[2] He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
[3] Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
[4] Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[5] He, L.-N. Carbon Dioxide Chemistry, Science Publisher, Beijing, 2013 (in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)
[6] Huang, K.; Sun, C. L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
[7] Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
[8] Yang, Z.-Z.; He, L.-N.; Gao, J.; Liu, A.-H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
[9] Cai, X.; Xie, B. Synthesis 2013, 45, 3305.
[10] Wang, S.; Du, G.; Xi, C. Org. Biomol. Chem. 2016, 14, 3666.
[11] Yu, B.; Liu, Z. M. Chin. Sci. Bull. 2015, 60, 1452 (in Chinese). (于博, 刘志敏, 科学通报, 2015, 60, 1452.)
[12] Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52.
[13] Rintjema, J.; Kleij, A. W. Synthesis 2016, 48, 3863.
[14] Lu, X.-B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
[15] Kielland, N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth. Catal. 2013, 355, 2115.
[16] Xu, B.-H.; Wang, J.-Q.; Sun, J.; Huang, Y.; Zhang, J.-P.; Zhang, X.-P.; Zhang, S.-J. Green Chem. 2015, 17, 108.
[17] Martin, C.; Fiorani, G.; Kleij, A. W. ACS Catal. 2015, 5, 1353.
[18] Lang, X.-D.; He, L.-N. Chem. Rec. 2016, 16, 1337.
[19] Manjolinho, F.; Arndt, M.; Gooßen, K.; Gooßen, L. J. ACS Catal. 2012, 2, 2014.
[20] Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813 (in Chinese). (朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813.)
[21] Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 7068.
[22] Zhang, Z.; Ju, T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741.
[23] Wang, S.; Shao, P.; Du, G.; Xi, C. J. Org. Chem. 2016, 81, 6672.
[24] Villiers, C.; Dognon, J.-P.; Pollet, R.; Thuery, P.; Ephritikhine, M. Angew. Chem., Int. Ed. 2010, 49, 3465.
[25] Sun, S.; Hu, W.-M.; Gu, N.; Cheng, J. Chem. Eur. J. 2016, 22, 18729.
[26] Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954.
[27] Zhang, Z.; Ju, T.; Miao, M.; Han, J.-L.; Zhang, Y.-H.; Zhu, X.-Y.; Ye, J.-H.; Yu, D.-G.; Zhi, Y.-G. Org. Lett. 2017, 19, 396.
[28] Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, K.; Skrydstrup, T. Angew. Chem., Int. Ed. 2015, 54, 6862.
[29] Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140.
[30] Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2006, 128, 11040.
[31] Yoo, W.-J.; Nguyen, T. V. Q.; Kobayashi, S. Angew. Chem., Int. Ed. 2014, 53, 10213.
[32] Zhang, W.-Z.; Li, W.-J.; Zhang, X.; Zhou, H.; Lu, X.-B. Org. Lett. 2010, 12, 4748.
[33] Flowers, B. J.; Gautreau-Service, R.; Jessop, P. G. Adv. Synth. Catal. 2008, 350, 2947.
[34] Sekine, K.; Ishida, T.; Yamada, T. Angew. Chem., Int. Ed. 2012, 51, 6989.
[35] Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. Chem. Commun. 2013, 49, 11320.
[36] Zhang, W.-Z.; Shi, L.-L.; Liu, C.; Yang, X.-T.; Wang, Y.-B.; Luo, Y.; Lu, X.-B. Org. Chem. Front. 2014, 1, 275.
[37] Zhang, W.-Z.; Liu, S.; Lu, X.-B. Beilstein J. Org. Chem. 2015, 11, 906.
[38] Zhang, W.-Z.; Yang, M.-W.; Lu, X.-B. Green Chem. 2016, 18, 4181.
[39] Masuda, Y.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2015, 137, 14063.
[40] Kaicharla, T.; Thangaraj, M.; Biju, A. T. Org. Lett. 2014, 16, 1728.
[41] Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani, Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960.
[42] Garcia-Dominguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914
[43] Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
[44] Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Lia, S.-H. Green Chem. 2017, 19, 1240.
[45] Zhang, W.-Z.; Xia, T.; Yang, X.-T.; Lu, X.-B. Chem. Commun. 2015, 51, 6175.
[46] Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610.
[47] Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T. Angew. Chem., Int. Ed. 2012, 51, 10605.
[48] Ishida, N.; Shimamoto, Y.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 11750.
[49] Rintjema, J.; Epping, R.; Fiorani, G.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
[50] Vara, B. A.; Struble, T. J.; Wang, W.; Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2015, 137, 7302.
[51] Sun, S.; Wang, B.; Gu, N.; Yu, J.-T.; Cheng, J. Org. Lett. 2017, 19, 1088.
[52] Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395.
[53] Zhang, S.; Li, X.-D.; He, L.-N. Acta Chim. Sinica 2016, 74, 17 (in Chinese). (张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
[54] Carry, B.; Zhang, L.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2016, 55, 6257.
[55] Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648.
[56] Lv, H.; Xing, Q.; Yue, C.; Lei, Z.; Li, F. Chem. Commun. 2016, 52, 6545.
[57] Song, J.; Zhou, B.; Liu, H.; Xie, C.; Meng, Q.; Zhang, Z.; Han, B. Green Chem. 2016, 18, 3956.
[58] Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 6316.
[59] Borjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739.
[60] Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6476.
[61] Cao, T.; Ma, S. Org. Lett. 2016, 18, 1510.
[62] Miao, B.; Li, S.; Li, G.; Ma, S. Org. Lett. 2016, 18, 2556.
[63] Zhang, W.-Z.; Yang, M.-W.; Yang, X.-T.; Shi, L.-L.; Wang, H.-B.; Lu, X.-B. Org. Chem. Front. 2016, 3, 217.

文章导航

/