研究简报

无金属参与的α-羰基二硫缩烯酮的硫甲基化反应

  • 张海峰 ,
  • 鲍汉扬 ,
  • 徐峥 ,
  • 刘运奎
展开
  • 浙江工业大学化学工程学院 绿色化学与技术国家重点实验室培育基地 杭州 310014

收稿日期: 2017-01-25

  修回日期: 2017-03-17

  网络出版日期: 2017-04-10

基金资助

国家自然科学基金(Nos.21172197,21372201)、浙江工业大学“省重中之重一级学科”开放基金资助项目.

Metal-Free Thiomethylation of α-Oxoketene Dithioacetals

  • Zhang Haifeng ,
  • Bao Hanyang ,
  • Xu Zheng ,
  • Liu Yunkui
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology;College of Chemical Engineering;Zhejiang University of Technology, Hangzhou 310014

Received date: 2017-01-25

  Revised date: 2017-03-17

  Online published: 2017-04-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21172197, 21372201) and the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology.

摘要

以二甲基亚砜(DMSO)为硫甲基来源,以NH4I为促进剂,实现了α-羰基二硫缩烯酮的硫甲基化反应,合成了硫甲基取代的α-羰基二硫缩烯酮类化合物.通过研究溶剂、温度、反应时间、促进剂及其用量等因素对反应的影响,获得了最优的反应条件.该反应具有原料简单易得、操作简便、底物普适性好和无金属参与等优点.

本文引用格式

张海峰 , 鲍汉扬 , 徐峥 , 刘运奎 . 无金属参与的α-羰基二硫缩烯酮的硫甲基化反应[J]. 有机化学, 2017 , 37(8) : 2153 -2158 . DOI: 10.6023/cjoc201701048

Abstract

With dimethyl sulfoxide (DMSO) as a source of thiomethyl group and NH4I as a promotor, the thiomethylation of α-oxoketene dithioacetals has been achieved to afford thiomethylated α-oxoketene dithioacetals in moderate to good yields. The optimized reaction conditions were established through systematic investigations of solvents, temperature, time, promotors and their dosages in the reaction. The present reaction has advantages of easy availability of starting materials, simple operation, good compatibility of substrates, and metal-free reaction conditions.

参考文献

[1] (a) Dieter, R. K. Tetrahedron 1986, 42, 3029.
(b) Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5423.
(c) Kolb, M. Synthesis 1997, 357.
(d) Yakoyama, M.; Imamoto, T. Synthesis 1984, 797.
[2] (a) Charanraj, T. P.; Ramachandra, P.; Ramesh, N.; Junjappa, H. Tetrahedron Lett. 2016, 57, 3264.
(b) Deshmukh, G.; Kalyankar, S.; Kalyankar, M. J. Chem., Biol. Phys. Sci. 2015, 5, 1185.
[3] (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096.
(b) Gademann, K.; Portmann, C.; Blom, J. F.; Zeder, M.; Jüttner, F. J. Nat. Prod. 2010, 73, 980.
(c) Halim, M.; Yee, D. J.; Sames, D. J. Am. Chem. Soc. 2008, 130, 14123.
(d) Pedras, M. S. C.; Zaharia, I. L. Org. Lett. 2001, 3, 1213.
(e) Pedras, M. S. C.; Zheng, Q. A.; Strelkov, S. J. Agric. Food Chem. 2008, 56, 9949.
(f) Wilson, A. J.; Kerns, J. K.; Callahan, J. F.; Moody, C. J. J. Med. Chem. 2013, 56, 7463.
[4] (a) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
(b) Martinek, M.; Korf, M.; Srogl, J. Chem. Commun. 2010, 46, 4387.
(c) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.; Kociok-Köhn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.
(d) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.
(e) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
(f) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
[5] Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
[6] Chu, L.; Yue, X.; Qing, F. L. Org. Lett. 2010, 12, 1644.
[7] Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915.
[8] Kumar, S.; Engman, L. J. Org. Chem. 2006, 71, 5400.
[9] Gao, X. F.; Pan, X. J.; Gao, J.; Jiang, H. F.; Yuan, G. Q.; Li, Y. W. Org. Lett. 2015, 17, 1038.
[10] Dai, C.; Xu, Z.; Huang, F.; Yu, Z.; Gao, Y. F. J. Org. Chem. 2012, 77, 4414.
[11] Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Chem. Eur. J. 2014, 20, 7911.
[12] Luo, F.; Pan, C.; Li, L.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 5304.
[13] Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H. Org. Lett. 2014, 16, 1196.
[14] Timpa, S. D.; Pell, C. J.; Ozerov, O. V. J. Am. Chem. Soc. 2014, 136, 14772.
[15] Luo, F.; Pan, C.; Li, L.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 5304.
[16] Chu, L.; Yue, X.; Qing, F. L. Org. Lett. 2010, 12, 1644.
[17] Liu, F. L.; Chen, J. R.; Zou, Y. Q.; Wei, Q.; Xiao, W. J. Org. Lett. 2014, 16, 3768.
[18] Patil, S. M.; Kulkarni, S.; Mascarenhas, M.; Sharma, R.; Roopan, S. M.; Roychowdhury, A. Tetrahedron 2013, 69, 8255.
[19] Keddie, D. J.; Johnson, T. E.; Arnold, D. P.; Bottle, S. E. Org. Biomol. Chem. 2005, 3, 2593.
[20] Kondo, T.; Kirschenbaum, L. J.; Kim, H.; Riesz, P. J. Phys. Chem. 1993, 97, 522.
[21] Ren, X.; Chen, J.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 6725.
[22] Zhang, Z.; Tian, Q.; Qian, J.; Liu, Q.; Liu, T.; Shi, L.; Zhang, G. J. Org. Chem. 2014, 79, 8182.
[23] Zhu, L. P.; Yu, H. M.; Guo, Q. P.; Chen, Q.; Xu, Q.; Wang R. Org. Lett. 2015, 17, 1978.
[24] Meng, T.; Feng, C.; Liu, L.; Wang, T.; Xu, K.; Zhao, W. Chin. J. Org. Chem. 2016, 36, 1382(in Chinese). (孟团结, 冯翠兰, 刘澜涛, 王涛, 许凯, 赵文献, 有机化学, 2016, 36, 1382.)

文章导航

/