综述与进展

烷基Heck反应研究进展

  • 董旭 ,
  • 侯永正 ,
  • 孟凡威 ,
  • 刘洪波 ,
  • 刘会
展开
  • a 湖南大学材料科学与工程学院 长沙 410082;
    b 山东理工大学化学与工程学院 淄博 255049

收稿日期: 2017-02-26

  修回日期: 2017-03-23

  网络出版日期: 2017-04-13

基金资助

中国博士后科学基金(No.2016M590736)和山东省博士后创新项目专项资金(No.201501002)资助项目.

Recent Advances on Alkyl-Heck Reaction

  • Dong Xu ,
  • Hou Yongzheng ,
  • Meng Fanwei ,
  • Liu Hongbo ,
  • Liu Hui
Expand
  • a College of Materials Science and Engineering, Hunan University, Changsha 410082;
    b School of Chemical Engineering, Shandong University of Technology, Zibo 255049

Received date: 2017-02-26

  Revised date: 2017-03-23

  Online published: 2017-04-13

Supported by

Project supported by the China Postdoctoral Science Foundation (No. 2016M590736) and the Special Funding for Postdoctoral Innovation Project of Shandong Province (No. 201501002).

摘要

在最近几年,钯催化的烷基Heck反应在构建C(sp3)-C(sp2)键领域被越来越多的化学工作者所关注.该综述总结归纳了涉及钯催化的烷基Heck型反应,主要分为分子内反应和分子间反应两大部分介绍,并详细讨论了多数转化的反应机理.希望通过该综述让更多的化学工作者了解钯自由基参与的Heck反应,并促进该领域的发展.

本文引用格式

董旭 , 侯永正 , 孟凡威 , 刘洪波 , 刘会 . 烷基Heck反应研究进展[J]. 有机化学, 2017 , 37(5) : 1088 -1098 . DOI: 10.6023/cjoc201702040

Abstract

Recently, palladium-catalyzed alkyl-Heck reaction causes more attentions due to the wide application in the construction of C(sp3)-C(sp2). This review gives an up-to-date overview of alkyl-Heck reaction involving palladium radical intermediates, which are sorted in two categories of intramolecular reactions and intermolecular reactions. For most of these transformations, the plausible mechanisms are demonstrated in details. Clarification of these issues is the key point for understanding the palladium radical involved alkyl-Heck reactions and developing new high performance methodologies.

参考文献

[1] For selected reviews of palladium-catalyzed coupling reactions, see: (a) Tucker, C. E.; de Vries, J. G. Top. Catal. 2002, 19, 111.
(b) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
(c) Zapf, A.; Beller, M. Chem. Commun. 2005, 431.
(d) Frisch, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674.
(e) Roglans, A.; Pla-Quintana, A.; MorenoManas, M. Chem. Rev. 2006, 106, 4622.
(f) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
(g) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047.
(h) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.
(i) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893.
(j) Molnar, A. Chem. Rev. 2011, 111, 2251.
(k) Negishi, E.-I.; Zeng, X.; Tan, Z.; Qian, M.; Hu, Q.; Huang, Z. In Metal-Catalyzed Cross-Coupling Reactions, 2nd, Eds: de Meijere, A.; Diederich, F., Wiley-VCH, Weinheim, Germany, 2004, Vol. 1, pp. 815~882.
(l) He, L.; Gu, M.; Wang, D.; Zhao, L.; Wang, M. Acta Chim. Sinica 2015, 73, 1018 (in Chinese). (何玲, 顾梦迪, 王德先, 赵亮, 王梅祥, 化学学报, 2015, 73, 1018.)
(m) Lu, P.; Feng, C.; Luo, D. Acta Chim. Sinica 2015, 73, 1315 (in Chinese). (鲁平, 冯超, 罗德平, 化学学报, 2015, 73, 1315.)
(n) Shang, X.; Liu, Z. Chin. J. Org. Chem. 2015, 35, 522 (in Chinese). (尚筱洁, 柳忠全, 有机化学, 2015, 35, 522.)
(o) Zhao, X.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35, 478 (in Chinese). (赵晓霞, 常宏宏, 李兴, 魏文珑, 有机化学, 2015, 35, 478.)
(p) Hao, E.; Jiang, X.; Fu, D.; Wang, D.; Xie, M.; Qu, G.; Guo, H. Chin. J. Org. Chem. 2016, 36, 2746 (in Chinese). (郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明, 有机化学, 2016, 36, 2746.)
(q) Liu, C.; Liu, G.; Zhao, H. Chin. J. Chem. 2016, 34, 1048.
[2] (a) Zapf, A.; Beller, M. Top. Catal. 2002, 19, 101.
(b) Beller, M.; Zapf, A. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E.-I., Wiley, New York, 2002, Vol. 1, pp. 1209~1222.
(c) Nicolaou, K. C. In Classics in Total Synthesis, Eds.: Nicolaou, K. C.; Sorensen, E. J., VCH, Weinheim, Germany, 1996, Chapter 31, pp. 565~632.
[3] (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
(b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
(c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
(d) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9047.
(e) Negishi, E. Angew. Chem., Int. Ed. 2011, 50, 6738.
(f) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[4] (a) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
(b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
(d) Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.
[5] Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765.
[6] (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(b) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.
(c) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
(d) Liu, Q.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 13871 and references therein.
[7] Firmansjah, L.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 11340.
[8] Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.
[9] Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 20146.
[10] Parasram, M.; Iaroshenko, V. O.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 17926.
[11] Dong, X.; Han, Y.; Yan, F.; Liu, Q.; Wang, P., Chen, K.; Li, Y.; Zhao, Z.; Dong, Y.; Liu, H. Org. Lett. 2016, 18, 3774.
[12] Surapanich, N.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V. Eur. J. Org. Chem. 2012, 2012, 5943.
[13] McMahon, C. M.; Alexanian, E. J. Angew. Chem., Int. Ed. 2014, 53, 5974.
[14] Zou, Y.; Zhou, J. Chem. Commun. 2014, 50, 3725.
[15] Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270.
[16] (a) Mori, M.; Oda, I.; Ban, Y. Tetrahedron Lett. 1982, 23, 5315.
(b) Mori, M.; Kanda, N.; Oda, I.; Ban, Y. Tetrahedron 1985, 41, 5465.
(c) Mori, M.; Kubo, Y.; Ban, Y. Tetrahedron Lett. 1985, 26, 1519.
(d) Mori, M.; Kanda, N.; Ban, Y. J. Chem. Soc., Chem. Commun. 1986, 1375.
(e) Mori, M.; Kubo, Y.; Ban, Y. Tetrahedron 1988, 44, 4321.
(f) Mori, M.; Kanda, N.; Ban, Y.; Aoe, K. J. Chem. Soc., Chem. Commun. 1988, 12.
[17] Curran, D. P.; Chang, C.-T. Tetrahedron Lett. 1990, 31, 933.
[18] (a) Tsuji, J.; Sato, K.; Nagashima, H. Tetrahedron 1985, 41, 393.
(b) Nagashima, H.; Sato, K.; Tsuji, J. Tetrahedron 1985, 41, 5645.
[19] Tsuji, J.; Sato, K.; Nagashima, H. Tetrahedron 1985, 41, 5003.
[20] Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Adv. Synth. Catal. 2002, 344, 261.
[21] Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin Trans. 1 1988, 563.
[22] (a) Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1992, 57, 4676.
(b) Qiu, Z.-M.; Burton, D. J. J. Org. Chem. 1995, 60, 5570.
[23] (a) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
(b) Jia, X.; Petrone, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 9870.
(c) Petrone, D. A.; Malik, H. A.; Clemenceau, A.; Lautens, M. Org. Lett. 2012, 14, 4806.
(d) Petrone, D. A.; Lischka, M.; Lautens, M. Angew. Chem., Int. Ed. 2013, 52, 10635.
(e) Petrone, D. A.; Yoon, H.; Weinstabl, H.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 7908.
[24] Braun, M.-G.; Katcher, M. H.; Doyle, A. G. Chem. Sci. 2013, 4, 1216.
[25] (a) Chen, C.; Hu, J.; Su, J.; Tong, X. Tetrahedron Lett. 2014, 55, 3229.
(b) Chen, C.; Hou, L.; Cheng, M.; Su, J.; Tong, X. Angew. Chem., Int. Ed. 2015, 54, 3092.
[26] Liu, H.; Qiao, Z.; Jiang, X. Org. Biomol. Chem. 2012, 10, 7274.
[27] Monks, B. M.; Cook, S. P. Angew. Chem., Int. Ed. 2013, 52, 14214.
[28] Liu, Q.; Chen, C.; Tong, X. Tetrahedron Lett. 2015, 56, 4483.
[29] Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295.
[30] Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812.
[31] (a) Fusano, A.; Sumino, S.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 2114.
(b) Fusano, A.; Sumino, S.; Nishitani, S.; Inouye, T.; Morimoto, K.; Fukuyama, T.; Ryu, I. Chem. Eur. J. 2012, 18, 9415.
[32] Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.

文章导航

/