综述与进展

吗啡类生物碱的合成研究进展

  • 李其林 ,
  • 张洪彬
展开
  • a. 云南省地震局 昆明 650224;
    b. 云南大学教育部自然资源药物化学重点实验室 昆明 650091

收稿日期: 2017-01-28

  修回日期: 2017-03-22

  网络出版日期: 2017-04-13

基金资助

长江学者和创新团队发展计划(No.IRT13095)、国家自然科学基金(Nos.20925205,21332007)资助项目.

Research Progress on the Synthesis of Morphine Alkaloids

  • Li Qilin ,
  • Zhang Hongbin
Expand
  • a. Earthquake Administration of Yunnan Province, Kunming 650224;
    b. Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, Yunnan University, Kunming 650091

Received date: 2017-01-28

  Revised date: 2017-03-22

  Online published: 2017-04-13

Supported by

Project supported by the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT13095),and the National Natural Science Foundation of China (Nos.20925205,21332007).

摘要

吗啡是从鸦片中分离得到的天然产物.因吗啡及其类似物具有独特的结构和有效的生物活性,合成化学家对其合成研究产生了高度的兴趣.按合成吗啡及其类似物的时间顺序分类,对吗啡类生物碱的合成研究进展进行了综述.

本文引用格式

李其林 , 张洪彬 . 吗啡类生物碱的合成研究进展[J]. 有机化学, 2017 , 37(7) : 1629 -1652 . DOI: 10.6023/cjoc201702048

Abstract

The morphine alkaloids constitute a class of structurally related natural products isolated from opium poppy, Papaver somniferum. The synthesis of morphine and its derivatives has attracted the attention of many generations of synthetic chemists due to their highly challenging molecular architecture and biological activities. Progresses toward the synthesis of the morphine alkaloids are reviewed in terms of chronological order.

参考文献

[1] Herbert, R. B.; Venter, H.; Pos, S. Nat. Prod. Rep. 2000, 17, 317.
[2] Reed, J. W.; Hudlicky, T. Acc. Chem. Res. 2015, 48, 674.
[3] Gum, A.; Stabile, M. In Studies in Natural Products Chemistry, Vol. 18, Elsevier, Amsterdam, 1996, pp. 43~154.
[4] Novak, B. H.; Hudlicky, T.; Reed, J. W.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 343.
[5] Blakemore, P. R.; White, J. D. Chem. Commun. 2002, 1159.
[6] Zezula, J.; Hudlicky, T. Synlett 2005, 388.
[7] Taber, D. F.; Neubert, T. D.; Schlecht, M. F. In Strategies and Tactics in Organic Synthesis, Vol. 5, Ed.:Harmata, M., Elsevier, London, 2004, pp. 353~389.
[8] Chida, N. Top. Curr. Chem. 2010, 299, 1.
[9] Rinner, U.; Hudlicky, T. Top. Curr. Chem. 2012, 309, 33.
[10] Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109.
[11] Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380.
[12] Gulland, J. M.; Robinson, R. Mem. Proc. Manchester Lit. Philos. Soc. 1925, 69, 79.
[13] Elad, D.; Ginsburg, D. J. Chem. Soc. 1954, 3052.
[14] Barton, D. H. R. Pure Appl. Chem. 1964, 9, 35.
[15] Kutchan, T. M. Alkaloids Chem. Biol. 1998, 50, 257.
[16] Szantay, C.; Barczai, B. M.; Pechy, P.; Blasko, G.; Dornyei, G. J. Org. Chem. 1982, 47, 594.
[17] White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39, 2393.
[18] Schwartz, M. A. J. Org. Chem. 1988, 53, 2318.
[19] Grewe, R.; Friedriccsen, W. Chem. Ber. Recl. 1967, 100, 1550.
[20] Grewe, R.; Fischer, H.; Friedric, W. Chem. Ber. Recl. 1967, 100, 1.
[21] Rice, K. C. J. Org. Chem. 1980, 45, 3135.
[22] White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39, 2393.
[23] Ludwig, W.; Schafer, H. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1025.
[24] Evans, D. A.; Mitch, C. H. Tetrahedron Lett. 1982, 23, 285.
[25] Moos, W. H.; Gless, R. D.; Rapoport, H. J. Org. Chem. 1983, 48, 227.
[26] Schultz, A. D.; Lucci, R. D.; Napier, J. J.; Kinoshita, H.; Ravichan-dran, R.; Shannon, P.; Yee, Y. K. J. Org. Chem. 1985, 50, 217.
[27] Toth, J. E.; Fuchs, P. L. J. Org. Chem. 1987, 52, 473.
[28] Tius, M. A.; Kerr, M. A. J. Am. Chem. Soc. 1992, 114, 5959.
[29] Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114, 9688.
[30] Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71, 449.
[31] Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028.
[32] Trauner, D.; Bats, J. W.; Werner, A.; Mulzer, J. J. Org. Chem. 1998, 63, 5908.
[33] White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871.
[34] Liou, J. P.; Cheng, C. Y. Tetrahedron Lett. 2000, 41, 915.
[35] Yamada, O.; Ogasawara, K. Org. Lett. 2000, 2, 2785.
[36] Nagata, H.; Miyazawa, N.; Ogasawara, K. Chem. Commun. 2001, 1094.
[37] Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416.
[38] Trost, B. M.; Tang, W. P. J. Am. Chem. Soc. 2002, 124, 14542.
[39] Trost, B. M.; Tang, W. P.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785.
[40] Uchida, K.; Yokoshima, S.; Kan, T.; Fukuyama, T. Org. Lett. 2006, 8, 5311.
[41] Omori, A. T.; Finn, K. J.; Leisch, H.; Carroll, R. J.; Hudlicky, T. Synlett 2007, 2859.
[42] Tanimoto, H.; Saito, R.; Chida, N. Tetrahedron. Lett. 2008, 49, 358.
[43] Varin, M.; Barre, E.; Iorga, B.; Guillou, C. Chem. Eur. J. 2008, 14, 6606.
[44] Stork, G.; Yamashita, A.; Adams, J.; Schulte, G. R.; Chesworth, R.; Miyazaki, Y.; Farmer, J. J. J. Am. Chem. Soc. 2009, 131, 11402.
[45] Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc. 2009, 131, 16045.
[46] Erhard, T.; Ehrlich, G.; Metz, P. Angew. Chem., Int. Ed. 2011, 50, 3892.
[47] Li, J.; Liu, G. L.; Zhao, X. H.; Du, J. Y.; Qu, H.; Chu, W. D.; Ding, M.; Jin, C. Y.; Wei, M. X.; Fan, C. A. Chem.-Asian J. 2013, 8, 1105.
[48] Kimishima, A.; Umihara, H.; Mizoguchi, A.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2014, 16, 6244.
[49] Tissot, M.; Phipps, R. J.; Lucas, C.; Leon, R. M.; Pace, R. D.; Ngouansavanh, T.; Gaunt, M. J. Angew. Chem., Int. Ed. 2014, 53, 13498.
[50] Arghese, V.; Hudlicky, T. Angew. Chem., Int. Ed. 2014, 53, 4355.
[51] Geffe, M.; Opatz, T. Org. Lett. 2014, 16, 5282.
[52] Li, Q. L.; Zhang, H. B. Chem. Eur. J. 2015, 21, 16379.
[53] Chu, S.; Mgnster, N.; Balan, T.; Smith, M. D. Angew. Chem., Int. Ed. 2016, 55, 14306.

文章导航

/