吗啡类生物碱的合成研究进展
收稿日期: 2017-01-28
修回日期: 2017-03-22
网络出版日期: 2017-04-13
基金资助
长江学者和创新团队发展计划(No.IRT13095)、国家自然科学基金(Nos.20925205,21332007)资助项目.
Research Progress on the Synthesis of Morphine Alkaloids
Received date: 2017-01-28
Revised date: 2017-03-22
Online published: 2017-04-13
Supported by
Project supported by the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT13095),and the National Natural Science Foundation of China (Nos.20925205,21332007).
李其林 , 张洪彬 . 吗啡类生物碱的合成研究进展[J]. 有机化学, 2017 , 37(7) : 1629 -1652 . DOI: 10.6023/cjoc201702048
The morphine alkaloids constitute a class of structurally related natural products isolated from opium poppy, Papaver somniferum. The synthesis of morphine and its derivatives has attracted the attention of many generations of synthetic chemists due to their highly challenging molecular architecture and biological activities. Progresses toward the synthesis of the morphine alkaloids are reviewed in terms of chronological order.
Key words: morphine; morphine alkaloids; synthesis
[1] Herbert, R. B.; Venter, H.; Pos, S. Nat. Prod. Rep. 2000, 17, 317.
[2] Reed, J. W.; Hudlicky, T. Acc. Chem. Res. 2015, 48, 674.
[3] Gum, A.; Stabile, M. In Studies in Natural Products Chemistry, Vol. 18, Elsevier, Amsterdam, 1996, pp. 43~154.
[4] Novak, B. H.; Hudlicky, T.; Reed, J. W.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 343.
[5] Blakemore, P. R.; White, J. D. Chem. Commun. 2002, 1159.
[6] Zezula, J.; Hudlicky, T. Synlett 2005, 388.
[7] Taber, D. F.; Neubert, T. D.; Schlecht, M. F. In Strategies and Tactics in Organic Synthesis, Vol. 5, Ed.:Harmata, M., Elsevier, London, 2004, pp. 353~389.
[8] Chida, N. Top. Curr. Chem. 2010, 299, 1.
[9] Rinner, U.; Hudlicky, T. Top. Curr. Chem. 2012, 309, 33.
[10] Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109.
[11] Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380.
[12] Gulland, J. M.; Robinson, R. Mem. Proc. Manchester Lit. Philos. Soc. 1925, 69, 79.
[13] Elad, D.; Ginsburg, D. J. Chem. Soc. 1954, 3052.
[14] Barton, D. H. R. Pure Appl. Chem. 1964, 9, 35.
[15] Kutchan, T. M. Alkaloids Chem. Biol. 1998, 50, 257.
[16] Szantay, C.; Barczai, B. M.; Pechy, P.; Blasko, G.; Dornyei, G. J. Org. Chem. 1982, 47, 594.
[17] White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39, 2393.
[18] Schwartz, M. A. J. Org. Chem. 1988, 53, 2318.
[19] Grewe, R.; Friedriccsen, W. Chem. Ber. Recl. 1967, 100, 1550.
[20] Grewe, R.; Fischer, H.; Friedric, W. Chem. Ber. Recl. 1967, 100, 1.
[21] Rice, K. C. J. Org. Chem. 1980, 45, 3135.
[22] White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39, 2393.
[23] Ludwig, W.; Schafer, H. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1025.
[24] Evans, D. A.; Mitch, C. H. Tetrahedron Lett. 1982, 23, 285.
[25] Moos, W. H.; Gless, R. D.; Rapoport, H. J. Org. Chem. 1983, 48, 227.
[26] Schultz, A. D.; Lucci, R. D.; Napier, J. J.; Kinoshita, H.; Ravichan-dran, R.; Shannon, P.; Yee, Y. K. J. Org. Chem. 1985, 50, 217.
[27] Toth, J. E.; Fuchs, P. L. J. Org. Chem. 1987, 52, 473.
[28] Tius, M. A.; Kerr, M. A. J. Am. Chem. Soc. 1992, 114, 5959.
[29] Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114, 9688.
[30] Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71, 449.
[31] Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028.
[32] Trauner, D.; Bats, J. W.; Werner, A.; Mulzer, J. J. Org. Chem. 1998, 63, 5908.
[33] White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871.
[34] Liou, J. P.; Cheng, C. Y. Tetrahedron Lett. 2000, 41, 915.
[35] Yamada, O.; Ogasawara, K. Org. Lett. 2000, 2, 2785.
[36] Nagata, H.; Miyazawa, N.; Ogasawara, K. Chem. Commun. 2001, 1094.
[37] Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416.
[38] Trost, B. M.; Tang, W. P. J. Am. Chem. Soc. 2002, 124, 14542.
[39] Trost, B. M.; Tang, W. P.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785.
[40] Uchida, K.; Yokoshima, S.; Kan, T.; Fukuyama, T. Org. Lett. 2006, 8, 5311.
[41] Omori, A. T.; Finn, K. J.; Leisch, H.; Carroll, R. J.; Hudlicky, T. Synlett 2007, 2859.
[42] Tanimoto, H.; Saito, R.; Chida, N. Tetrahedron. Lett. 2008, 49, 358.
[43] Varin, M.; Barre, E.; Iorga, B.; Guillou, C. Chem. Eur. J. 2008, 14, 6606.
[44] Stork, G.; Yamashita, A.; Adams, J.; Schulte, G. R.; Chesworth, R.; Miyazaki, Y.; Farmer, J. J. J. Am. Chem. Soc. 2009, 131, 11402.
[45] Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc. 2009, 131, 16045.
[46] Erhard, T.; Ehrlich, G.; Metz, P. Angew. Chem., Int. Ed. 2011, 50, 3892.
[47] Li, J.; Liu, G. L.; Zhao, X. H.; Du, J. Y.; Qu, H.; Chu, W. D.; Ding, M.; Jin, C. Y.; Wei, M. X.; Fan, C. A. Chem.-Asian J. 2013, 8, 1105.
[48] Kimishima, A.; Umihara, H.; Mizoguchi, A.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2014, 16, 6244.
[49] Tissot, M.; Phipps, R. J.; Lucas, C.; Leon, R. M.; Pace, R. D.; Ngouansavanh, T.; Gaunt, M. J. Angew. Chem., Int. Ed. 2014, 53, 13498.
[50] Arghese, V.; Hudlicky, T. Angew. Chem., Int. Ed. 2014, 53, 4355.
[51] Geffe, M.; Opatz, T. Org. Lett. 2014, 16, 5282.
[52] Li, Q. L.; Zhang, H. B. Chem. Eur. J. 2015, 21, 16379.
[53] Chu, S.; Mgnster, N.; Balan, T.; Smith, M. D. Angew. Chem., Int. Ed. 2016, 55, 14306.
/
〈 |
|
〉 |