综述与进展

发光材料新成员——白光凝胶的现状与未来

  • 杨贺玮 ,
  • 张宇哲 ,
  • 李艳杰 ,
  • 王京翔 ,
  • 李小萌 ,
  • 宋健 ,
  • 张宝 ,
  • 冯亚青
展开
  • a 天津大学化工学院 天津 300072;
    b 天津大学 天津化工协同创新中心 天津 300072

收稿日期: 2017-02-25

  修回日期: 2017-04-24

  网络出版日期: 2017-05-02

基金资助

国家自然科学基金(Nos.21476162,21676185)和科技部国际合作(Nos.2012DFG41980,2016YFE0114900)资助项目.

New Member of Luminescent Materials——Status and Future of White Light Emitting Gel

  • Yang Hewei ,
  • Zhang Yuzhe ,
  • Li Yanjie ,
  • Wang Jingxiang ,
  • Li Xiaomeng ,
  • Song Jian ,
  • Zhang Bao ,
  • FengYaqing
Expand
  • a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072;
    b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072

Received date: 2017-02-25

  Revised date: 2017-04-24

  Online published: 2017-05-02

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21476162, 21676185) and the International S & T Cooperation Project of China (Nos. 2012DFG41980, 2016YFE0114900).

摘要

白光发射材料由三种三原色(红、绿、蓝)发色体或一种三原色与一种补充色(橙色或者绿色)发色体组成,可以覆盖整个可见光区(380~750 nm).白光凝胶是一类具有液体流动性和固体可塑性的白色发光材料,合成成本低,易于加工,使用方式灵活.将不同发色团化合物凝胶化,有助于供受体分子的靠近、偶极方向的一致和供体发射光谱与受体吸收光谱的重叠,实现更好的分子间能量转移,获得可调控的白光.重点从能量转移的角度,介绍以纯有机化合物、有机金属配位化合物、稀土金属离子等作为受体发色团的白光凝胶的研究现状,并对其在白光显示、智能材料等领域的应用进行展望.

本文引用格式

杨贺玮 , 张宇哲 , 李艳杰 , 王京翔 , 李小萌 , 宋健 , 张宝 , 冯亚青 . 发光材料新成员——白光凝胶的现状与未来[J]. 有机化学, 2017 , 37(8) : 1991 -2001 . DOI: 10.6023/cjoc201702039

Abstract

White light emission materials consist of components emitting three primary colors (red, green and blue) or two complementary colors (orange or green), which can cover the entire visible region (380~750 nm). White light emitting gel with the solution flow character and solid plasticity has the advantages of low cost, easy processing and flexible use. Gelation of components with different emission colors will help the donor and receptor molecule to get closer, contribute to the dipole direction and overlap the emission spectra of the donor and the absorption spectra of the receptor, which promotes molecular energy transfer to achieve better performance of white light emitting. Here we focus on the resonance energy transfer and introduce the white light emitting gel with the receptor chromophore of organic compounds, organic metal complexes and rare earth metal ions. In the end the future prospects of white light emitting gel are proposed.

参考文献

[1] Kamtekar, K. T.; Monkman, A. P; Bryce, M. R. Adv. Mater. 2010, 22, 572.
[2] Chen, Z. L.; Li, H. L.; Wei, J.; Xiao, Y.; Yu, H. B. Chin. J. Org. Chem. 2015, 35, 789(in Chinese). (陈忠林, 李红玲, 韦驾, 肖义, 于海波, 有机化学, 2015, 35, 789.)
[3] Willis-Fox, N.; Kraft, M.; Arlt, J.; Scherf, U.; Evans, R. C. Adv. Funct. Mater. 2016, 26, 532.
[4] Chen, P.; Holten-Andersen, N. Adv. Opt. Mater. 2015, 3, 1041.
[5] Maiti, D. K.; Banerjee, A. Chem. Commun. 2013, 49, 6909.
[6] Melucci, M.; Zambianchi, M.; Barbarella, G.; Manet, I.; Montalti, M. J. Mater. Chem. 2010, 20, 9903.
[7] Balan, B.; Vijayakumar, C.; Ogi, S.; Takeuchi, M. J. Mater. Chem. 2012, 22, 11224.
[8] Gai, F.Y.; Zhou, T. L.; Zhang, L. G.; Li, X.; Hou, W. J.; Yang, X. C.; Li, Y. T.; Zhao, X. G.; Xu, D.; Liu, Y. L.; Huo, Q. S. Nanoscale 2012, 4, 6041.
[9] Zhang, X.; Rehm, S.; Safontsempere, M. M.; Würthner, F. Nat. Chem. 2009, 1, 623.
[10] Babu, S. S.; Aimi, J.; Ozawa, H.; Shirahata, N.; Saeki, A.; Seki, S.; Ajayaghosh, A.; Möhwald, H.; Nakanishi, T. Angew. Chem., Int. Edit. 2012, 124, 3447.
[11] Praveen, V.K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53, 365.
[12] Sun, H. B.; Liu, S. J.; Zhao, Q.; Huang, W. Chin. J. Chem. 2015, 33, 1140.
[13] Wang, T.; Wang, Z.Y.; Xie, D.Y.; Wang, C.; Zhen, X. L.; Li, Y. J.; Yu, X. D. RSC Adv. 2015, 5, 107694.
[14] Raymo, F. M.; Tomasulo, M. Chem. Soc. Rev. 2005, 34, 327.
[15] Hissler, M.; Harriman, A.; Khatyr, A.; Ziessel, R. Chem. Eur. J. 1999, 5, 3366.
[16] Verhoeven, J. W. J. Photochem. Photobiol. C 2006, 7, 40.
[17] Zhang, C.; Zhao, Y. A.; Yao, J. N. New J. Chem. 2011, 35, 973.
[18] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37, 109.
[19] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
[20] Babu, S. S.; Kartha, K. K.; Ajayaghosh, A. J. Phys. Chem. Lett. 2010, 1, 3413.
[21] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Angew. Chem., Int. Edit. 2007, 119, 6376.
[22] Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. Adv. Mater. 2009, 21, 2059.
[23] Giansante, C.; Raffy, G.; Fer, C. S.; Rahma,H.; Kao, M. T. J. Am. Chem. Soc. 2011, 133, 316.
[24] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclère, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P.H. J. J. Am. Chem. Soc. 2009, 131, 833.
[25] Giansante, C.; Schäfer, C.; Raffy, G.; Guerzo, A. D. J. Phys. Chem. C 2012, 116, 21706.
[26] Abbel, R.; Weegen, R. V. D.; Pisula, W.; Surin, M.; Leclère, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Eur. J. 2009, 15, 9737.
[27] Bairi, P.; Roy, B.; Nandi, A. K. Chem. Commun. 2012, 48, 10850.
[28] Bairi, P.; Roy, B.; Chakraborty, P.; Nandi, A. K. ACS Appl. Mater. Inter. 2013, 5, 5478.
[29] Pallavi, P.; Bandyopadhyay, S.; Louis, J.; Deshmukh, A.; Patra, A. Chem. Commun. 2017, 53, 1257.
[30] Rao, K. V.; Datta, K. K. R.; Eswaramoorthy, M.; George, S. J. Adv. Mater. 2013, 25, 1713.
[31] Hemgesberg, M.; Bay, S.; Schütz, S.; Dörr, G.; Ernst, S.; Kowalsky, W.; Müller, T. J. J.; Wagenblast, G.; Thiel, W. R. Microporous Mesoporous Mater. 2013, 174, 1.
[32] Maity, A.; Ali, F.; Agarwalla, H.; Anothumakkoolb, B.; Das, A. Chem. Commun. 2015, 51, 2130.
[33] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[34] Bhattacharya, S.; Samanta, S. K. Chem.-Eur. J. 2012, 18, 16632.
[35] Yadav, Y. J.; Heinrich, B.; Luca, G. D.; Talarico, A. M.; Mastropietro, T. F.; Ghedini, M.; Donnio, B.; Szerb, E. I. Adv. Opt. Mater. 2013, 1, 844.
[36] Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179.
[37] Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9(in Chinese). (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.)
[38] Cao, X.; Wu, Y.; Liu, K.; Yu, X.; Wu, B. J. Mater. Chem. 2012, 22, 2650.
[39] Cao, X. H.; Lan, H. C.; Li, Z. H.; Mao, Y. Y.; Chen, L. M.; Wu, Y. Q.; Yi, T. Phys. Chem. Chem. Phys. 2015, 17, 32297.
[40] Roy, S.; Katiyar, A. K.; Mondal, S. P.; Ray, S. K.; Biradha, K. ACS Appl. Mater. Inter. 2014, 6, 11493.
[41] Paoli, G. D.; Olic, Z.D.; Rizzo, F.; Cola, L. D.; Gtle, F. V. Adv. Funct. Mater. 2007, 17, 821.
[42] Huang, X.; Zucchi, G. L.; Tran, J.; Pansu, R. B.; Brosseau, A.; Geffroy, B.; Nief, F. O. New J. Chem. 2014, 38, 5793.
[43] Kumar, P.; Soumya, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 8068.
[44] Laishram, R.; Bhowmik, S.; Maitra, U. J. Mater. Chem. C 2015, 3, 5885.
[45] Simmons, B. A.; Taylor, C. E.; Landis, F. A.; John, V. T.; McPherson, G. L.; Schwartz, D. K.; Moore, R. J. Am. Chem. Soc. 2001, 123, 2414.
[46] Katsube, S.; Harada, T.; Umecky, T.; Takamuku, T.; Kaji, T.; Hiramoto, M.; Katsumoto, Y.; Nishiyama, K. Chem. Lett. 2014, 43, 1861.
[47] Kim, H.; Chang, J. Y. RSC Adv. 2013, 3, 1774.
[48] Ghosh, K.; Balog, E. R. M.; Kahn, J. L.; Shepherd, D. P.; Martinez, J. S.; Rocha, R. C. Macromol. Chem. Phys. 2015, 216, 1856.
[49] Oxana, K.; Ronan, D.; Santos, C. D.; Markus, B.; Kruger, P. E. Angew. Chem., Int. Edit. 2012, 51, 7208.
[50] Sambri, L.; Cucinotta, F.; Paoli, G. D.; Stagnic, S.; Colab, L. D. New J. Chem. 2010, 34, 2093.
[51] Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. J. Am. Chem. Soc. 2015, 137, 11590.
[52] Sutar, P.; Suresh, V. M.; Maji, T. K. Chem. Commun. 2015, 51, 9876.

文章导航

/