发光材料新成员——白光凝胶的现状与未来
收稿日期: 2017-02-25
修回日期: 2017-04-24
网络出版日期: 2017-05-02
基金资助
国家自然科学基金(Nos.21476162,21676185)和科技部国际合作(Nos.2012DFG41980,2016YFE0114900)资助项目.
New Member of Luminescent Materials——Status and Future of White Light Emitting Gel
Received date: 2017-02-25
Revised date: 2017-04-24
Online published: 2017-05-02
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21476162, 21676185) and the International S & T Cooperation Project of China (Nos. 2012DFG41980, 2016YFE0114900).
杨贺玮 , 张宇哲 , 李艳杰 , 王京翔 , 李小萌 , 宋健 , 张宝 , 冯亚青 . 发光材料新成员——白光凝胶的现状与未来[J]. 有机化学, 2017 , 37(8) : 1991 -2001 . DOI: 10.6023/cjoc201702039
White light emission materials consist of components emitting three primary colors (red, green and blue) or two complementary colors (orange or green), which can cover the entire visible region (380~750 nm). White light emitting gel with the solution flow character and solid plasticity has the advantages of low cost, easy processing and flexible use. Gelation of components with different emission colors will help the donor and receptor molecule to get closer, contribute to the dipole direction and overlap the emission spectra of the donor and the absorption spectra of the receptor, which promotes molecular energy transfer to achieve better performance of white light emitting. Here we focus on the resonance energy transfer and introduce the white light emitting gel with the receptor chromophore of organic compounds, organic metal complexes and rare earth metal ions. In the end the future prospects of white light emitting gel are proposed.
Key words: white light emitting; gel; energy transfer
[1] Kamtekar, K. T.; Monkman, A. P; Bryce, M. R. Adv. Mater. 2010, 22, 572.
[2] Chen, Z. L.; Li, H. L.; Wei, J.; Xiao, Y.; Yu, H. B. Chin. J. Org. Chem. 2015, 35, 789(in Chinese). (陈忠林, 李红玲, 韦驾, 肖义, 于海波, 有机化学, 2015, 35, 789.)
[3] Willis-Fox, N.; Kraft, M.; Arlt, J.; Scherf, U.; Evans, R. C. Adv. Funct. Mater. 2016, 26, 532.
[4] Chen, P.; Holten-Andersen, N. Adv. Opt. Mater. 2015, 3, 1041.
[5] Maiti, D. K.; Banerjee, A. Chem. Commun. 2013, 49, 6909.
[6] Melucci, M.; Zambianchi, M.; Barbarella, G.; Manet, I.; Montalti, M. J. Mater. Chem. 2010, 20, 9903.
[7] Balan, B.; Vijayakumar, C.; Ogi, S.; Takeuchi, M. J. Mater. Chem. 2012, 22, 11224.
[8] Gai, F.Y.; Zhou, T. L.; Zhang, L. G.; Li, X.; Hou, W. J.; Yang, X. C.; Li, Y. T.; Zhao, X. G.; Xu, D.; Liu, Y. L.; Huo, Q. S. Nanoscale 2012, 4, 6041.
[9] Zhang, X.; Rehm, S.; Safontsempere, M. M.; Würthner, F. Nat. Chem. 2009, 1, 623.
[10] Babu, S. S.; Aimi, J.; Ozawa, H.; Shirahata, N.; Saeki, A.; Seki, S.; Ajayaghosh, A.; Möhwald, H.; Nakanishi, T. Angew. Chem., Int. Edit. 2012, 124, 3447.
[11] Praveen, V.K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53, 365.
[12] Sun, H. B.; Liu, S. J.; Zhao, Q.; Huang, W. Chin. J. Chem. 2015, 33, 1140.
[13] Wang, T.; Wang, Z.Y.; Xie, D.Y.; Wang, C.; Zhen, X. L.; Li, Y. J.; Yu, X. D. RSC Adv. 2015, 5, 107694.
[14] Raymo, F. M.; Tomasulo, M. Chem. Soc. Rev. 2005, 34, 327.
[15] Hissler, M.; Harriman, A.; Khatyr, A.; Ziessel, R. Chem. Eur. J. 1999, 5, 3366.
[16] Verhoeven, J. W. J. Photochem. Photobiol. C 2006, 7, 40.
[17] Zhang, C.; Zhao, Y. A.; Yao, J. N. New J. Chem. 2011, 35, 973.
[18] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37, 109.
[19] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
[20] Babu, S. S.; Kartha, K. K.; Ajayaghosh, A. J. Phys. Chem. Lett. 2010, 1, 3413.
[21] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Angew. Chem., Int. Edit. 2007, 119, 6376.
[22] Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. Adv. Mater. 2009, 21, 2059.
[23] Giansante, C.; Raffy, G.; Fer, C. S.; Rahma,H.; Kao, M. T. J. Am. Chem. Soc. 2011, 133, 316.
[24] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclère, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P.H. J. J. Am. Chem. Soc. 2009, 131, 833.
[25] Giansante, C.; Schäfer, C.; Raffy, G.; Guerzo, A. D. J. Phys. Chem. C 2012, 116, 21706.
[26] Abbel, R.; Weegen, R. V. D.; Pisula, W.; Surin, M.; Leclère, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Eur. J. 2009, 15, 9737.
[27] Bairi, P.; Roy, B.; Nandi, A. K. Chem. Commun. 2012, 48, 10850.
[28] Bairi, P.; Roy, B.; Chakraborty, P.; Nandi, A. K. ACS Appl. Mater. Inter. 2013, 5, 5478.
[29] Pallavi, P.; Bandyopadhyay, S.; Louis, J.; Deshmukh, A.; Patra, A. Chem. Commun. 2017, 53, 1257.
[30] Rao, K. V.; Datta, K. K. R.; Eswaramoorthy, M.; George, S. J. Adv. Mater. 2013, 25, 1713.
[31] Hemgesberg, M.; Bay, S.; Schütz, S.; Dörr, G.; Ernst, S.; Kowalsky, W.; Müller, T. J. J.; Wagenblast, G.; Thiel, W. R. Microporous Mesoporous Mater. 2013, 174, 1.
[32] Maity, A.; Ali, F.; Agarwalla, H.; Anothumakkoolb, B.; Das, A. Chem. Commun. 2015, 51, 2130.
[33] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[34] Bhattacharya, S.; Samanta, S. K. Chem.-Eur. J. 2012, 18, 16632.
[35] Yadav, Y. J.; Heinrich, B.; Luca, G. D.; Talarico, A. M.; Mastropietro, T. F.; Ghedini, M.; Donnio, B.; Szerb, E. I. Adv. Opt. Mater. 2013, 1, 844.
[36] Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179.
[37] Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9(in Chinese). (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.)
[38] Cao, X.; Wu, Y.; Liu, K.; Yu, X.; Wu, B. J. Mater. Chem. 2012, 22, 2650.
[39] Cao, X. H.; Lan, H. C.; Li, Z. H.; Mao, Y. Y.; Chen, L. M.; Wu, Y. Q.; Yi, T. Phys. Chem. Chem. Phys. 2015, 17, 32297.
[40] Roy, S.; Katiyar, A. K.; Mondal, S. P.; Ray, S. K.; Biradha, K. ACS Appl. Mater. Inter. 2014, 6, 11493.
[41] Paoli, G. D.; Olic, Z.D.; Rizzo, F.; Cola, L. D.; Gtle, F. V. Adv. Funct. Mater. 2007, 17, 821.
[42] Huang, X.; Zucchi, G. L.; Tran, J.; Pansu, R. B.; Brosseau, A.; Geffroy, B.; Nief, F. O. New J. Chem. 2014, 38, 5793.
[43] Kumar, P.; Soumya, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 8068.
[44] Laishram, R.; Bhowmik, S.; Maitra, U. J. Mater. Chem. C 2015, 3, 5885.
[45] Simmons, B. A.; Taylor, C. E.; Landis, F. A.; John, V. T.; McPherson, G. L.; Schwartz, D. K.; Moore, R. J. Am. Chem. Soc. 2001, 123, 2414.
[46] Katsube, S.; Harada, T.; Umecky, T.; Takamuku, T.; Kaji, T.; Hiramoto, M.; Katsumoto, Y.; Nishiyama, K. Chem. Lett. 2014, 43, 1861.
[47] Kim, H.; Chang, J. Y. RSC Adv. 2013, 3, 1774.
[48] Ghosh, K.; Balog, E. R. M.; Kahn, J. L.; Shepherd, D. P.; Martinez, J. S.; Rocha, R. C. Macromol. Chem. Phys. 2015, 216, 1856.
[49] Oxana, K.; Ronan, D.; Santos, C. D.; Markus, B.; Kruger, P. E. Angew. Chem., Int. Edit. 2012, 51, 7208.
[50] Sambri, L.; Cucinotta, F.; Paoli, G. D.; Stagnic, S.; Colab, L. D. New J. Chem. 2010, 34, 2093.
[51] Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. J. Am. Chem. Soc. 2015, 137, 11590.
[52] Sutar, P.; Suresh, V. M.; Maji, T. K. Chem. Commun. 2015, 51, 9876.
/
〈 |
|
〉 |