综述与进展

活性羰基化合物荧光探针的研究进展

  • 陈燚 ,
  • 胡奥晗 ,
  • 杨凌毅 ,
  • 李早英 ,
  • 严琨
展开
  • 武汉大学化学与分子科学学院 武汉 430072

收稿日期: 2017-03-24

  修回日期: 2017-04-16

  网络出版日期: 2017-05-04

基金资助

国家自然科学基金(No.21401144)及湖北省自然科学基金(No.2013CFB236)资助项目.

Recent Progress in Fluorescent Probe for the Detection of Reactive Carbonyl Species

  • Chen Yi ,
  • Hu Aohan ,
  • Yang Lingyi ,
  • Li Zaoying ,
  • Yan Kun
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2017-03-24

  Revised date: 2017-04-16

  Online published: 2017-05-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21401144) and the Natural Science Foundation of Hubei Province (No. 2013CFB236).

摘要

活性羰基化合物一直以来被人们称为致癌物和人类毒物,当其浓度升高时,会导致多种疾病,因此,设计开发用于选择性识别和高灵敏检测生物体内的活性羰基化合物的技术具有十分重要的意义.近年来,荧光探针具有操作简单、灵敏度高、选择性好,响应时间短以及能实现实时检测等优势,在活性羰基化合物及其他活性物种如活性氧、活性氮、次氯酸以及硫醇等物质的检测方面获得了快速发展.鉴于活性羰基化合物荧光探针综述方面的报道很少,从探针分子与待测物之间发生的反应类别进行归纳和总结,概括了甲醛、甲基乙二醛、丙二醛以及丙烯醛等活性羰基化合物的荧光探针,并从设计理念、识别机理以及应用等方面进行了描述,还对活性羰基化合物荧光探针的设计和应用前景提出了展望.

本文引用格式

陈燚 , 胡奥晗 , 杨凌毅 , 李早英 , 严琨 . 活性羰基化合物荧光探针的研究进展[J]. 有机化学, 2017 , 37(8) : 1939 -1951 . DOI: 10.6023/cjoc201703040

Abstract

Reactive carbonyl species (RCS) have long been known as carcinogens and human poison. Elevated levels of RCS have also been associated with pathologies. In order to elucidate these roles of RCS, the design and development technology for selective and sensitive detection to RCS in vivo are crucial. In rencent years, fluorescent probes for detecting reactive carbonyl species, reactive oxygen, reactive nitrogen, hypochlorous acid and thiols have been developed due to various advantages such as simplicity of operation, high sensitivity and selectivity, response quickly and real-time tracking in living cells. Few reviews have been made for detecting reactive carbonyl species. Therefore, in this review, a general overview of the reaction-based fluoresccent in the selected recent research is provided involving design, recognition mechanism and application of fluorescent probes for detecting reactive carbonyl species of formaldehyde, methylglyoxal, malondialdehyde, acrolein and so on. Finally, the prospect to design and applications of probes for reactive carbonyl species is given.

参考文献

[1] (a) Kalapos, M. P. Diabetes Res. Clin. Pract. 2013, 99, 260.
(b) Onyango, A. N. Chem. Phys. Lipids 2012, 165, 777.
[2] Semchyshyn, H. M. Sci. World J. 2014, 2014, 10.
[3] (a) Colzani, M.; De Maddis, D.; Casali, G.; Carini, M.; Vistoli, G.; Aldini, G. ChemMedChem 2016, 11, 1778.
(b) Regazzoni, L.; De Courten, B.; Garzon, D.; Altomare, A.; Marinello, C.; Jakubova, M.; Vallova, S.; Krumpolec, P.; Carini, M.; Ukropec, J.; Ukropcova, B.; Aldini, G. Sci. Rep. 2016, 6, 27224.
(c) Hwang, S.; Lee, Y.-M.; Aldini, G.; Yeum, K.-J. Molecules 2016, 21, 280.
(d) Biswas, S.; Mano, J. I. Plant Cell Physiol. 2016, 57, 1432.
[4] (a) Nemet, I.; Varga-Defterdarovi?, L.; Turk, Z. Mol. Nutr. Food Res. 2006, 50, 1105.
(b) Kato, S.; Burke, P. J.; Koch, T. H.; Bierbaum, V. M. Anal. Chem. 2001, 73, 2992.
(c) Soman, A.; Qiu, Y.; Chan Li, Q. J. Chromatogr. Sci. 2008, 46, 461.
[5] (a) Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42, 6019.
(b) Niu, L.-Y.; Chen, Y.-Z.; Zheng, H.-R.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chem. Soc. Rev. 2015, 44, 6143.
(c) Wang, S.; Shen, S.; Zhang, Y.; Dai, X.; Zhao, B. Chin. J. Org. Chem. 2014, 34, 1717(in Chinese). (王胜清, 申世立, 张延如, 戴溪, 赵宝祥, 有机化学, 2014, 34, 1717.)
[6] (a) Santos-Figueroa, L. E.; Moragues, M. E.; Climent, E.; Agostini, A.; Martinez-Manez, R.; Sancenon, F. Chem. Soc. Rev. 2013, 42, 3489.
(b) Li, B.; Meng, W.; Yang, M.; Su, N.; Liu, X.; Yang, B. Chin. J. Org. Chem. 2015, 35, 2629(in Chinese). (李波, 孟文斐, 杨美盼, 苏娜, 刘晓静, 杨秉勤, 有机化学, 2015, 35, 2629.)
[7] (a) Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
(b) Wang, X.-D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666.
(c) Zhang, R.; Zhao, J.; Han, G.; Liu, Z.; Liu, C.; Zhang, C.; Liu, B.; Jiang, C.; Liu, R.; Zhao, T.; Han, M.-Y.; Zhang, Z. J. Am. Chem. Soc. 2016, 138, 3769.
[8] Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.
[9] (a) Zhang, H.; Liu, R.; Liu, J.; Li, L.; Wang, P.; Yao, S. Q.; Xu, Z.; Sun, H. Chem. Sci. 2016, 7, 256.
(b) Meimetis, L. G.; Giedt, R. J.; Mikula, H.; Carlson, J. C.; Kohler, R. H.; Pirovich, D. B.; Weissleder, R. Chem. Commun. 2016, 52, 9953.
[10] (a) Chen, X.; Lee, K.-A.; Ren, X.; Ryu, J.-C.; Kim, G.; Ryu, J.-H.; Lee, W.-J.; Yoon, J. Nat Protoc. 2016, 11, 1219.
(b) Fan, J.; Han, Z.; Kang, Y.; Peng, X. Sci. Rep. 2016, 6, 19562.
(c) Zhu, X.; Xiong, M.; Liu, H.-W.; Mao, G.-J.; Zhou, L.; Zhang, J.; Hu, X.; Zhang, X.-B.; Tan, W. Chem. Commun. 2016, 52, 733.
[11] (a) Choi, S.-A.; Park, C. S.; Kwon, O. S.; Giong, H.-K.; Lee, J.-S.; Ha, T. H.; Lee, C.-S. Sci. Rep. 2016, 6, 26203.
(b) Li, W.; Fang, B.; Jin, M.; Tian, Y. Anal. Chem. 2017, 89, 2553.
(c) Xu, K.; Luan, D.; Wang, X.; Hu, B.; Liu, X.; Kong, F.; Tang, B. Angew. Chem. 2016, 128, 12943.
[12] (a) Deng, B.; Ren, M.; Wang, J.-Y.; Zhou, K.; Li, W. Sens. Actuators, B 2017, 248, 50.
(b) Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y.-T. J. Am. Chem. Soc. 2017, 139, 285.
(c) Li, Y.; Lü, Z.; Liu, M.; Xing. G. Chin. J. Org. Chem. 2016, 36, 962(in Chinese). (李杨洁, 吕子奇, 刘敏, 邢国文, 有机化学, 2016, 36, 962.)
[13] (a) Yuan, Q.; Zhao, Z.-M.; Zhang, Y.-R.; Su, L.; Miao, J.-Y.; Zhao, B.-X. Sens. Actuators, B. 2017, 247, 736.
(b) Wang, Y.; Li, J.; Feng, L.; Yu, J.; Zhang, Y.; Ye, D.; Chen, H.-Y. Anal. Chem. 2016, 88, 12403.
(c) Li, M.; Wang, Y.; Liu, G.; Lü, H.; Xing, G. Chin. J. Org. Chem. 2017, 37, 356(in Chinese). (李美含, 王宇童, 刘广建, 吕海娟, 邢国文, 有机化学, 2017, 37, 356.)
[14] (a) Zhang, J.-X.; Li, H.; Chen, C.-F.; Lan, R.; Chan, W.-L.; Law, G.-L.; Wang, W.-K.; Wang, K.-L. Chem. Commun. 2012, 48, 9646.
(b) Wang, B.; Fan, J.; Wang, X.; Zhu, H.; Wang, J.; Mu, H.; Peng, X. Chem. Commun. 2015, 51, 792.
(c) Singh, H.; Lee, H. W.; Heo, C. H.; Byun, J. W.; SarKar, A. R.; Kim, H. M. Chem. Commun. 2015, 51, 12099.
[15] (a) Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J. R.; Cole, P. A.; Casero, R. A.; Shi, Y. Cell 2004, 119, 941.
(b) Tsukada, Y.-I.; Fang, J.; Erdjument-Bromage, H.; Warren, M. E.; Borchers, C. H.; Tempst, P. and Zhang, Y. Nature 2006, 439, 811.
(c) Whetstine, J. R.; Nottke, A.; Lan, F.; Huarte, M.; Smolikov, S.; Chen, Z.; Spooner, E.; Li, E.; Zhang, G.; Colaiacovo, M. Cell 2006, 125, 467.
[16] Tong, Z.; Han, C.; Luo, W.; Wang, X.; Li, H.; Luo, H.; Zhou, J.; Qi, J.; He, R. Age 2013, 35, 583.
[17] Tong, Z.; Zhang, J.; Luo, W.; Wang, W.; Li, F.; Li, H.; Luo, H.; Lu, J.; Zhou, J.; Wan, Y.; He, R. Neurobiol. Aging 2011, 32, 31.
[18] Tulpule, K.; Dringen, R. J. Neurochem. 2013, 127, 7.
[19] (a) Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 14574.
(b) Overman, L. E.; Humphreys, P. G.; Welmaker, G. S. Org. React. 2011, 748.
(c) Winter, R. F.; Rauhut, G. Chem.-Eur. J. 2002, 8, 641.
(d) Mccormack, M. P.; Shalumova, T.; Tanski, J. M.; Waters, S. P. Org. Lett. 2010, 12, 3906.
[20] Brewer, T. F.; Chang, C. J. J. Am. Chem. Soc. 2015, 137, 10886.
[21] Roth, A.; Li, H.; Anorma, C.; Chan, J. J. Am. Chem. Soc. 2015, 137, 10890.
[22] Xu, J.; Zhang, Y.; Zeng, L.; Liu, J.; Kinsella, J. M.; Sheng, R. Talanta 2016, 160, 645.
[23] He, L.; Yang, X.; Liu, Y.; Kong, X.; Lin, W. Chem. Commun. 2016, 52, 4029.
[24] (a) Dai, Z.-R.; Ge, G.-B.; Feng, L.; Ning, J.; Hu, L.-H.; Jin, Q.; Wang, D.-D.; Lv, X.; Dou, T.-Y.; Cui, J.-N. J. Am. Chem. Soc. 2015, 137, 14488.
(b) Zhu, B.; Li, P.; Shu, W.; Wang, X.; Liu, C.; Wang, Y.; Wang, Z.; Wang, Y.; Tang, B. Anal. Chem. 2016, 88, 12532.
(c) Zhou, L.; Zhang, X.; Wang, Q.; Lv, Y.; Mao, G.; Luo, A.; Wu, Y.; Wu, Y.; Zhang, J.; Tan, W. J. Am. Chem. Soc. 2014, 136, 9838.
(d) Zhang, J.; Zhu, X.-Y.; Hu, X.-X.; Liu, H.-W.; Li, J.; Feng, L. L.; Yin, X.; Zhang, X.-B.; Tan, W. Anal. Chem. 2016, 88, 11892.
(e) Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Joe, E.-H.; Cho, B. R.; Kim, H. M. J. Am. Chem. Soc. 2013, 135, 9915.
(f) Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.-B.; Yuan, L.; Zhang, X.-B.; Chang, Y.-T. J. Am. Chem. Soc. 2017, 139, 285.
(g) Kim, H. M.; Cho, B. R. Acc. Chem. Res. 2009, 42, 863.
[25] Li, J.-B.; Wang, Q.-Q.; Yuan, L.; Wu, Y.-X.; Hu, X.-X.; Zhang, X.-B.; Tan, W. Analyst 2016, 141, 3395.
[26] Xie, Z.; Ge, J.; Zhang, H.; Bai, T.; He, S.; Ling, J.; Sun, H.; Zhu, Q. Sens. Actuators, B 2017, 241, 1050.
[27] Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418
[28] Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. Chem. Soc. Rev. 2011, 40, 340.
[29] Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Nat. Nanotechnol. 2015, 10, 370.
[30] Liu, W.; Truillet, C.; Flavell, R. R.; Brewer, T. F.; Evans, M. J.; Wilson, D. M.; Chang, C. J. Chem. Sci. 2016, 7, 5503.
[31] (a) Han, Q.; Mou, Z.; Wang, H.; Tang, X.; Dong, Z.; Wang, L.; Dong, X.; Liu, W. Anal. Chem. 2016, 88, 7206.
(b) Shu, W.; Yan, L.; Liu, J.; Wang, Z.; Zhang, S.; Tang, C.; Liu, C.; Zhu, B.; Du, B. Ind. Eng. Chem. Res. 2015, 54, 8056.
(c) Zhou, P.; Yao, J.; Hu, G.; Fang, J. ACS Chem. Biol. 2016, 11,1098.
(d) Liu, X.-L.; Du, X.-J.; Dai, C.-G.; Song, Q.-H. J. Org. Chem. 2014, 79, 9481.
[32] Tang, Y.; Kong, X.; Liu, Z.-R.; Xu, A.; Lin, W. Anal. Chem. 2016, 88, 9359.
[33] Lee, Y. H.; Tang, Y.; Verwilst, P.; Lin, W.; Kim, J. S. Chem. Commun. 2016, 52, 11247.
[34] (a) Watts, C. Biochim. Biophys. Acta, Proteins Proteomics 2012, 1824, 14.
(b) Zhao, H. Traffic 2012, 13, 1307.
[35] Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.
[36] (a) Zhou, J.; Shi, W.; Li, L.; Gong, Q.; Wu, X.; Li, X.; Ma, H. Anal. Chem. 2016, 88, 4557.
(b) Dong, B.; Song, X.; Wang, C.; Kong, X.; Tang, Y.; Lin, W. Anal. Chem. 2016, 88, 4085.
(c) Qiu, K.; Huang, H.; Liu, B.; Liu, Y.; Huang, Z.; Chen, Y.; Ji, L.-N.; Chao, H. ACS Appl. Mater. Interfaces. 2016, 8, 12702.
(d) Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Angew. Chem., Int. Ed. 2014, 53, 10916.
(e) Wang, Y.; Li, J.; Feng, L.; Yu, J.; Zhang, Y.; Ye, D.; Chen, H.-Y. Anal. Chem. 2016, 88, 12403.
(f) Fan, J.; Han, Z.; Kang, Y.; Peng, X. Sci. Rep. 2016, 6, 1.
[37] Tang, Y.; Kong, X.; Xu, A.; Dong, B.; Lin, W. Angew. Chem., Int. Ed. 2016, 55, 3356.
[38] Liu, C.; Shi, C.; Li, H.; Du, W.; Li, Z.; Wei, L.; Yu, M. Sens. Actuators, B 2015, 219, 185.
[39] Song, H.; Rajendiran, S.; Kim, N.; Jeong, S. K.; Koo, E.; Park, G.; Thangadurai, T. D.; Yoon, S. Tetrahedron Lett. 2012, 53, 4913.
[40] Dong, B.; Song, X.; Tang, Y.; Lin, W. Sens. Actuators, B 2016, 222, 325.
[41] Liu, C.; Cheng, A.-W.; Xia, X.-K.; Liu, Y.-F.; He, S.-W.; Guo, X.; Sun, J.-Y. Anal. Methods 2016, 8, 2764.
[42] Aksornneam, L.; Kanatharana, P.; Thavarungkul, P.; Thammakhet, C. Anal. Methods 2016, 8, 1249.
[43] He, L.; Yang, X.; Ren, M.; Kong, X.; Liu, Y.; Lin, W. Chem. Commun. 2016, 52, 9582.
[44] Zhao, X. J.; Yang, J. H.; Li, Y. F. Sens. Actuators, B 2014, 203, 417.
[45] Zhang, S.; Yang, H.; Ma, Y.; Fang, Y. Sens. Actuators, B 2016, 227, 271.
[46] Wong, K.-F.; Deng, J.-R.; Wei, X.-Q.; Shao, S.-P.; Xiang, D.-P.; Wong, M.-K. Org. Biomol. Chem. 2015, 13, 7408.
[47] Lin, J.-M.; Huang, Y.-Q.; Liu, Z.-B.; Lin, C.-Q.; Ma, X.; Liu, J.-M. RSC Adv. 2015, 5, 99944.
[48] Thornalley, P. J. Drug Metabol. Drug Interact. 2008, 23, 125.
[49] (a) Matafome, P.; Sena, C.; Seiça, R. Endocrine 2013, 43, 472.
(b) Degen, J.; Vogel, M.; Richter, D.; Hellwig, M.; Henle, T. J. Agric. Food Chem. 2013, 61, 10253.
[50] Kilhovd, B. K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P. A.; Hanssen, K. F.; Laakso, M. Atherosclerosis 2009, 205, 590.
[51] Eberhardt, M. J.; Filipovic, M. R.; Leffler, A.; De La Roche, J.; Kistner, K.; Fischer, M. J.; Fleming, T.; Zimmermann, K.; IvanovicBurmazovic, I.; Nawroth, P. P. J. Biol. Chem. 2012, 287, 28291.
[52] Nakayama, K.; Nakayama, M.; Iwabuchi, M.; Terawaki, H.; Sato, T.; Kohno, M.; Ito, S. Am. J. Nephrol. 2008, 28, 871.
[53] Wang, T.; Douglass Jr, E. F.; Fitzgerald, K. J.; Spiegel, D. A. J. Am. Chem. Soc. 2013, 135, 12429.
[54] (a) Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 8640.
(b) Yuan, H.; Cho, H.; Chen, H. H.; Panagia, M.; Sosnovik, D. E.; Josephson, L. Chem. Commun. 2013, 49, 10361.
(c) Xiao, H.; Li, J.; Zhao, J.; Yin, G.; Quan, Y.; Wang, J.; Wang, R. J. Mater. Chem. B 2015, 3, 1633.
(d) Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B. Anal. Chem. 2013, 85, 9877.
(e) Masanta, G.; Heo, C. H.; Lim, C. S.; Bae, S. K.; Cho, B. R.; Kim, H. M. Chem. Commun. 2012, 48, 3518.
(f) Lim, C. S.; Masanta, G.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 11132.
[55] Pun, P. B. L.; Logan, A.; Darley-Usmar, V.; Chacko, B.; Johnson, M. S.; Huang, G. W.; Rogatti, S.; Prime, T. A.; Methner, C.; Krieg, T.; Fearnley, I. M.; Larsen, L.; Larsen, D. S.; Menger, K. E.; Collins, Y.; James, A. M.; Kumar, G. D. K.; Hartley, R. C.; Smith, R. a. J.; Murphy, M. P. Free Radicals Biol. Med. 2014, 67, 437.
[56] Tang, T.; Zhou, Y.; Chen, Y.; Li, M.; Feng, Y.; Wang, C.; Wang, S.; Zhou, X. Anal. Methods 2015, 7, 2386.
[57] Mei, B.; Miao, Q.; Tang, A.; Liang, G. Nanoscale 2015, 7, 15605.
[58] Yang, Z.; Liang, G.; Ma, M.; Abbah, A. S.; Lu, W. W.; Xu, B. Chem. Commun. 2007, 8, 843.
[59] Su, T.; Tang, Z.; He, H.; Li, W.; Wang, X.; Liao, C.; Sun, Y.; Wang, Q. Chem. Sci. 2014, 5, 4204.
[60] Yu, Y.; Chau, Y. Biomacromolecules 2015, 16, 56.
[61] Miao, Q.; Wu, Z.; Hai, Z.; Tao, C.; Yuan, Q.; Gong, Y.; Guan, Y.; Jiang, J.; Liang, G. Nanoscale 2015, 7, 2797.
[62] Liu, S.; Luo, Y.; Liang, G. Nanoscale 2016, 8, 766.
[63] Yuen, L. H.; Saxena, N. S.; Park, H. S.; Weinberg, K.; Kool, E. T. ACS Chem. Biol. 2016, 11, 2312.
[64] Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. Dyes Pigm. 2017, 138, 23.
[65] (a) Zhang, F.; Liang, X.; Zhang, W.; Wang, Y.-L.; Wang, H.; Mohammed, Y. H.; Song, B.; Zhang, R.; Yuan, J. Biosens. Bioelectron. 2017, 87, 1005.
(b) Cao, L.; Zhang, R.; Zhang, W.; Du, Z.; Liu, C.; Ye, Z.; Song, B.; Yuan, J. Biomaterials 2015, 68, 21.
(c) Zhang, R.; Ye, Z.; Song, B.; Dai, Z.; An, X.; Yuan, J. Inorg. Chem. 2013, 52, 10325.
(d) Zhang, R.; Ye, Z.; Yin, Y.; Wang, G.; Jin, D.; Yuan, J.; Piper, J. A. Bioconjugate Chem. 2012, 23, 725.
[66] Zhang, W.; Zhang, F.; Wang, Y.-L.; Song, B.; Zhang, R.; Yuan, J. Inorg. Chem. 2017, 56, 1309.
[67] Gorrini, C.; Harris, I. S. and Mak, T. W. Nat. Rev. Drug Discovery 2013, 12, 931.
[68] Riggins, J. N.; Pratt, D. A.; Voehler, M.; Daniels, J. S.; Marnett, L. J. J. Am. Chem. Soc. 2004, 126, 10571.
[69] Niedernhofer, L. J.; Daniels, J. S.; Rouzer, C. A.; Greene, R. E.; Marnett, L. J. J. Biol. Chem. 2003, 278, 31426.
[70] (a) Jain, S. K.; Mcvie, R.; Smith, T. Diabetes Care 2000, 23, 1389.
(b) Tajika, K.; Okamatsu, K.; Takano, M.; Inami, S.; Yamamoto, M.; Murakami, D.; Kobayashi, N.; Ohba, T.; Hata, N.; Seino, Y.; Mizuno, K. Circ. J. 2012, 76, 2211.
(c) Romieu, I.; Barraza-Villarreal, A.; Escamilla-Nuñez, C.; Almstrand, A.-C.; Diaz-Sanchez, D.; Sly, P. D.; Olin, A.-C. J. Allergy Clin. Immunol. 2008, 121, 903.
(d) Dillioglugil, M. O.; Mek?k, H.; Muezzinoglu, B.; Ozkan, T. A.; Demir, C. G.; Dillioglugil, O. Int. Urol. Nephrol. 2012, 44, 1691.
[71] Chen, J.; Zeng, L.; Xia, T.; Li, S.; Yan, T.; Wu, S.; Qiu, G.; Liu, Z. Anal. Chem. 2015, 87, 8052.
[72] Pilz, J.; Meineke, I.; Gleiter, C. H. J. Chromatogr. Biomed. Appl. 2000, 742, 315.
[73] Hensley, K.; Robinson, K. A.; Gabbita, S. P.; Salsman, S.; Floyd, R. A. Free Radic. Biol. Med. 2000, 28, 1456.
[74] (a) Sharmin, S.; Sakata, K.; Kashiwagi, K.; Ueda, S.; Iwasaki, S.; Shirahata, A.; Igarashi, K. Biochem. Biophys. Res. Commun. 2001, 282, 228.
(b) Yoshida, M.; Tomitori, H.; Machi, Y.; Hagihara, M.; Higashi, K.; Goda, H.; Ohya, T.; Niitsu, M.; Kashiwagi, K.; Igarashi, K. Biochem. Biophys. Res. Commun. 2009, 378, 313.
[75] Togashi, M.; Terai, T.; Kojima, H.; Hanaoka, K.; Igarashi, K.; Hirata, Y.; Urano, Y.; Nagano, T. Chem. Commun. 2014, 50, 14946.

文章导航

/