综述与进展

草酸酯加氢制乙二醇钌金属均相催化体系的研究进展

  • 张亦伟 ,
  • 陈艺林 ,
  • 方霄龙 ,
  • 袁友珠 ,
  • 朱红平
展开
  • 厦门大学化学化工学院 固体表面物理化学国家重点实验室 醇醚酯清洁生产国家工程实验室 厦门 361005

收稿日期: 2017-03-10

  修回日期: 2017-05-02

  网络出版日期: 2017-05-17

基金资助

国家自然科学基金(Nos.21473142,91545115,21473145)和教育部创新团队(Nos.IRT_14R31,J1310024)资助项目.

Advances for the Ruthenium Complexes-Based Homogeneous Catalytic Hydrogenation of Oxalates to Ethylene Glycol

  • Zhang Yiwei ,
  • Chen Yilin ,
  • Fang Xiaolong ,
  • Yuan Youzhu ,
  • Zhu Hongping
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2017-03-10

  Revised date: 2017-05-02

  Online published: 2017-05-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21473142, 91545115, 21473145) and the Innovative Research Team of China (Nos. IRT_14R31, J1310024).

摘要

草酸酯加氢是重要的有机化学反应,在工业制乙二醇生产中有着重要的应用.对钌金属配合物均相催化反应的研究进行了综述.以催化反应体系为焦点,探讨了多种因素如温度、氢气压力、催化剂浓度、反应时间、添加剂等对底物转化率以及产物选择性的影响,并讨论了催化反应机理,其中金属-配体协同促进的H2分子异裂,进而完成对底物分子中酯基依次加氢的反应机理是探讨的重点,这为新型催化剂的设计和应用提供参考.

本文引用格式

张亦伟 , 陈艺林 , 方霄龙 , 袁友珠 , 朱红平 . 草酸酯加氢制乙二醇钌金属均相催化体系的研究进展[J]. 有机化学, 2017 , 37(9) : 2275 -2286 . DOI: 10.6023/cjoc201703021

Abstract

Hydrogenation of oxalates is one of the important organic reactions, which has an ultimate use for the industrial production of ethylene glycol. The studies on the ruthenium complexes-based homogeneous catalytic reaction systems are herein summarized. With the focus on the catalytic reaction systems, the important factors with significant influences on the oxalate transformation efficiency as well as the product selectivity are discussed, including temperature, H2 pressure, catalyst concentration, reaction duration, additives, and so on. The catalytic reaction mechanisms are also discussed in detail, where the mechanism for the H2-heterolysis promoted under the metal-ligand cooperation for the oxalate hydrogenation to ethylene glycol is enhanced. This study would be useful for designing the new catalyst applicable in industry.

参考文献

[1] (a) Jiang, Z. Synthetic Technology and Application 2010, 25(4), 27(in Chinese). (江镇海, 合成技术及应用, 2010, 25(4), 27.)
(b) Huang, G.; Li, X.; Yang, Y.; Qu, J. Petrochem. Technol. Appl. 2015, 33, 75(in Chinese).(黄格省, 李雪静, 杨延翔, 曲静波, 石化技术与应用, 2015, 33, 75.)
[2] (a) Li, D.; Wang, H. Modern Chem. Ind. 2017, 37(1), 5(in Chinese). (李代红, 王洪波, 现代化工, 2017, 37(1), 5.)
(b) Liu, Z. Chem. Ind. Eng. Proc. 2013, 32, 1214(in Chinese). (刘宗语, 化工进展, 2013, 32, 1214.)
(c) Chen, W.; Sun, J.; Zhang, J.; Zhang, S.; Hua, W. Chem. Ind. Eng. Proc. 2014, 33, 1740(in Chinese). (成卫国, 孙剑, 张军平, 张锁江, 华炜, 化工进展, 2014, 33, 1740.)
[3] (a) Gaylord, N. G. J. Chem. Educ. 1957, 34, 367.
(b) Hudlicky, M. Reductions in Organic Chemistry, ACS, Washington, DC, 1996.
[4] (a) Modler, R. F.; Gubler, R.; Inoguchi, Y. Detergent Alchols, CEH Marketing Research Report, 2004.
(b) Hong, W. S. Natural Detergent Alcohols by a Vapour Phase Ester Hydrogenation Process, PPP Review 93-2-1, 2004.
(c) Cant, N. W.; Trimm, D. L.; Turek, T. Catal. Rev. Sci. Eng. 1994, 36, 645.
[5] March, J. Advanced Organic Chemistry:Reactions Mechanisms and Structure, 4th ed., Wiley-Interscience, New York, 1992, p. 1213.
[6] (a) Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses, Academic Press, New York, 1979.
(b) de Vries, J. G.; Elsevier, C. J. Handbook of Heterogeneous Hydrogenation for Organic Synthesis, Weily-VCH, Weinheim, 2007.
[7] (a) Yue, H.-R.; Zhao, Y.-J.; Ma, X.-B.; Gong, J.-L. Chem. Soc. Rev. 2012, 41, 4218.
(b) Zhao, Y.; Zhao, S.; Wang, B.; Lv, J.; Ma, X. Chem. Indu. Eng. Prog. 2013, 32, 721(in Chinese). (赵玉军, 赵硕, 王博, 吕静, 马新宾, 化工进展, 2013, 32, 721.)
(c) Jin, E.-L.; Zhang, Y.-L.; He, L.-L.; Harris, H. G.; Teng, B.-T.; Fan, M.-H. Appl. Catal. A:Gen. 2014, 476, 158.
(d) Higman, C.; Tam, S. Chem. Rev. 2014, 114, 1673.
(e) Li, J.; Duan, X.; Lin, H.; Ye, L.; Yuan, Y. Petrochem. Technol. 2014, 43, 985(in Chinese). (李建辉, 段新平, 林海强, 叶林敏, 袁友珠, 石油化工, 2014, 43, 985.)
(f) Li, S.-M.; Wang, Y.; Zhang, J.; Wang, S.-P.; Xu, Y.; Zhao, Y.-J.; Ma, X.-B. Ind. Eng. Chem. Res. 2015, 54, 1243.
[8] (a) Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. WO 2003093208, 2003[Chem. Abstr. 2003, 139, 366612].
(b) Pope, S. J. A.; Champness, N. R.; Reid, G. J. Chem. Soc., Dalton Trans. 1997, 1639.
[9] Seyden-Penne, J. Reductions by the Allumino-and Borohydride in Organic Synthesis, 2nd ed.; Wiley-VCH, New York, 1997.
[10] (a) Turek, T.; Trimm, D.; Cant, N. Catal. Rev. -Sci. Eng. 1994, 36, 645.
(b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today 2000, 63, 87.
[11] Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
[12] (a) Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.
(b) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.
(c) De Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
(d) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414.
[13] Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1984, 22, 353.
[14] (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1985, 29, 269.
(b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Organomet. Chem. 1986, 299, 233.
(c) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1988, 44, 347.
[15] (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1991, 64, 257.
(b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F.; Ianelli, S.; Nardelli, M. J. Organomet. Chem. 1995, 498, 177.
[16] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
[17] Kara, Y.; Wada, K. Chem. Lett. 1991, 20, 553.
[18] van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A:Chem. 2003, 206, 185.
[19] Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tooze, R. P. Chem. Commun. 2006, 2289.
[20] Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. Coord. Chem. Rev. 1999, 193~195, 73.
[21] Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A:Chem. 2011, 346, 70.
[22] Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5, 3228.
[23] Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.
[24] Eveline, J.; Jongbloed, L. S.; Tromp, D. S.; Martin, L.; Bas, D. B.; Elsevier, C. J. ChemSusChem 2013, 6, 1737.
[25] (a) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
(b) Pàmies, O.; Bäckvall, J. E. Chem. Eur. J. 2001, 7, 5052.
(c) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Vergman, R. G. Acc. Chem. Res. 2002, 35, 44.
(d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201.
[26] (a) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466.
(b) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40.
(c) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
(d) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
[27] (a) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
(b) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2001, 123, 7473.
(c) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870.
(d) Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Adv. Synth. Catal. 2005, 347, 571.
[28] (a) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.
(b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130, 11979.
(c) Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2011, 133, 9666.
(d) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.
[29] Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.
[30] (a) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
(b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744.
[31] Li, W.; Xie, J.; Yuan, M.; Zhou, Q. Green Chem. 2014, 16, 4081.
[32] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.
[33] (a) Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Chem. Commun. 2011, 47, 8349.
(b) Yang, X. ACS Catal. 2012, 2, 964.
[34] (a) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
(b) Wang, Y.; Duan, X.; Zheng, J.; Lin, H.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. Catal. Sci. Technol. 2012, 2, 1637.
(c) Huang, Y.; Ariga, H.; Zheng, X.; Duan, X.; Takakusagi, S.; Asakura, K.; Yuan, Y. J. Catal. 2013, 307, 74.
(d) Zheng, J.; Lin, H.; Wang, Y.; Zheng, X.; Duan, X.; Yuan, Y. J. Catal. 2013, 297, 110.
(e) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.
(f) Li, M.; Ye, L.; Zheng, J.; Fang, H.; Kroner, A.; Yuan, Y.; Tsang, S. C. E. Chem. Commun. 2016, 52, 2569.
(g) Li, M.; Zheng, J.; Qu, J.; Liao, F.; Raine, E.; Kuo, W. C. H.; Su, S. S.; Po, P.; Yuan, Y.; Tsang, S. C. E. Sci. Rep. 2016, 6, 20527.
(h) Zheng, J.; Duan, X.; Lin, H.; Gu, Z.; Fang, H.; Li, J.; Yuan, Y. Nanoscale 2016, 8, 5959.
[35] Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. RSC Adv. 2016, 6, 45512.

文章导航

/