综述与进展

氮杂环卡宾催化有机反应的研究进展

  • 王翱 ,
  • 肖永龙 ,
  • 周宇 ,
  • 徐进宜 ,
  • 柳红
展开
  • a 中国药科大学 天然药物活性物质与功能国家重点实验室 南京 210000;
    b 中国科学院上海药物研究所 受体结构与功能重点实验室 上海 201203

收稿日期: 2017-02-26

  修回日期: 2017-05-25

  网络出版日期: 2017-06-02

基金资助

国家自然科学基金(No.21632008)资助项目.

Progress of Organic Reactions Catalyzed by N-Heterocyclic Carbenes

  • Wang Ao ,
  • Xiao Yonglong ,
  • Zhou Yu ,
  • Xu Jinyi ,
  • Liu Hong
Expand
  • a State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210000;
    b CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203

Received date: 2017-02-26

  Revised date: 2017-05-25

  Online published: 2017-06-02

Supported by

Project supported by the National Natural Science Foundation of China (No.21632008).

摘要

自从1991年Arduengo第一次分离得到稳定的游离N-杂环卡宾以来,其作为一种高效的有机催化剂得到了迅速的发展.由于N-杂环卡宾的极性反转特性,它在有机合成中构建复杂分子的地位举足轻重.一些特定的路易斯碱及氧化剂可诱导卡宾与羰基化合物形成Breslow中间体、烯醇化合物和高烯醇化合物,这些中间体极大地拓展了卡宾的应用范围.综述了近几年N-杂环卡宾在催化有机反应中的研究进展,如催化安息香缩合反应、Stetter反应、a3-d3极性反转反应、环合反应和氟化反应等.

本文引用格式

王翱 , 肖永龙 , 周宇 , 徐进宜 , 柳红 . 氮杂环卡宾催化有机反应的研究进展[J]. 有机化学, 2017 , 37(10) : 2590 -2608 . DOI: 10.6023/cjoc201702041

Abstract

Since the first stable N-heterocyclic carbene was isolated by Arduengo in 1991, N-heterocyclic carbine has developed rapidly as a kind of efficient organic catalyst. It plays important role in building complex molecules in organic synthesis for the characteristics of umpolung. Some special Lewis bases and oxidants can induce carbine reaction with carbonyl to form Breslow intermediates, enol and homoenolate, which expand the reaction greatly. In this paper, the recent progresses in organic catalytic reactions including Stetter reaction, a3-d3 umpolung catalyzed by carbines are reviewed.

参考文献

[1] Nef, J. U. Justus Liebigs Ann. Chem. 1895, 287, 265.
[2] Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561.
[3] Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978.
[4] Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239.
[5] Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296.
[6] Shapiro, L. R.; Samuels, S.; Breslow, L.; Camacho, T. Am. J. Public Health 1983, 73, 773.
[7] Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. Chem. Commun. 2010, 46, 6282.
[8] Thai, K.; Langdon, S. M.; Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214.
[9] Langdon, S. M.; Wilde, M. M.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539.
[10] Haghshenas, P.; Gravel, M. Org. Lett. 2016, 18, 4518.
[11] Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696.
[12] DiRocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904.
[13] Sun, L. H.; Liang, Z. Q.; Jia, W. Q.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 5803.
[14] Xu, J.; Mou, C.; Zhu, T.; Song, B. A.; Chi, Y. R. Org. Lett. 2014, 16, 3272.
[15] Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15.
[16] Ciganek, E. Synthesis-Stuttgart 1995, 1311.
[17] Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J. P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.
[18] de Alaniz, J. R.; Kerr, M. S.; Moore, J. L.; Rovis, T. J. Org. Chem. 2008, 73, 2033.
[19] Cullen, S. C.; Rovis, T. Org. Lett. 2008, 10, 3141.
[20] Wang, Z.; Yu, Z.; Wang, Y.; Shi, D. Synthesis 2012, 44, 1559.
[21] Law, K. R.; McErlean, C. S. P. Chem.-Eur. J. 2013, 19, 15852.
[22] Liu, G.; Wilkerson, P. D.; Toth, C. A.; Xu, H. Org. Lett. 2012, 14, 858.
[23] Li, Y.; Shi, F.-Q.; He, Q.-L.; You, S.-L. Org. Lett. 2009, 11, 3182.
[24] Vedachalam, S.; Tan, S. M.; Teo, H. P.; Cai, S.; Liu, X.-W. Org. Lett. 2012, 14, 174.
[25] Bortolini, O.; Fantin, G.; Fogagnolo, M.; Giovannini, P. P.; Massi, A.; Pacifico, S. Org. Biomol. Chem. 2011, 9, 8437.
[26] Zhang, J.; Xing, C.; Tiwari, B.; Chi, Y. R. J. Am. Chem. Soc. 2013, 135, 8113.
[27] Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13, 4708.
[28] McCusker, E. O.; Scheidt, K. A. Angew. Chem., Int. Ed. 2013, 52, 13616.
[29] Xu, J.; Chen, X.; Wang, M.; Zheng, P.; Song, B. A.; Chi, Y. R. Angew. Chem., Int. Ed. 2015, 54, 5161.
[30] Zhao, X.; Ruhl, K. E.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 12330.
[31] Mo, J.; Yang, R.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2013, 15, 50.
[32] Li, F.; Wu, Z.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 656.
[33] Xu, J.; Yuan, S.; Peng, J.; Miao, M.; Chen, Z.; Ren, H. Chem. Commun. 2017, 53, 3430.
[34] Zhang, H.-M.; Gao, Z.-H.; Ye, S. Org. Lett. 2014, 16, 3079.
[35] Zhao, Y. M.; Cheung, M. S.; Lin, Z.; Sun, J. Angew. Chem., Int. Ed. 2012, 51, 10359.
[36] Ni, Q.; Zhang, H.; Grossmann, A.; Loh, C. C.; Merkens, C.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 13562.
[37] Dong, X.; Yang, W.; Hu, W.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 660.
[38] Rong, Z. Q.; Jia, M. Q.; You, S. L. Org. Lett. 2011, 13, 4080.
[39] Yao, C.; Wang, D.; Lu, J.; Li, T.; Jiao, W.; Yu, C. Chemistry 2012, 18, 1914.
[40] Leong, W. W. Y.; Chen, X.; Chi, Y. R. Green Chem. 2013, 15, 1505.
[41] Raup, D. E.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766.
[42] Zhao, X.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 12466.
[43] De Vreese, R.; D'Hooghe, M. Beilstein J. Org. Chem. 2012, 8, 398.
[44] Chen, X.; Fang, X.; Chi, Y. R. Chem. Sci. 2013, 4, 2613.
[45] Nair, V.; Sinu, C. R.; Babu, B. P.; Varghese, V.; Jose, A.; Suresh, E. Org. Lett. 2009, 11, 5570.
[46] Maji, B.; Ji, L.; Wang, S.; Vedachalam, S.; Ganguly, R.; Liu, X. W. Angew. Chem., Int. Ed. 2012, 51, 8276.
[47] White, N. A.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 8504.
[48] Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592.
[49] Zhang, Z.; Zeng, X.; Xie, D.; Chen, D.; Ding, L.; Wang, A.; Yang, L.; Zhong, G. Org. Lett. 2015, 17, 5052.
[50] Xia, W.; Yao, H.; Liu, D.; Zhao, L.; Zhou, Y.; Liu, H. Adv. Synth. Catal. 2016, 358, 1864.
[51] Lv, H.; Tiwari, B.; Mo, J.; Xing, C.; Chi, Y. R. Org. Lett. 2012, 14, 5412.
[52] Jiang, K.; Tiwari, B.; Chi, Y. R. Org. Lett. 2012, 14, 2382.
[53] Chen, X. Y.; Xia, F.; Cheng, J. T.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 10644.
[54] Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8588.
[55] Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W.; Chi, Y. R. Nat. Chem. 2013, 5, 835.
[56] Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chemistry 2015, 21, 5355.
[57] Shen, L.-T.; Shao, P.-L.; Ye, S. Adv. Synth. Catal. 2011, 353, 1943.
[58] Que, Y.; Li, T.; Yu, C.; Wang, X. S.; Yao, C. J. Org. Chem. 2015, 80, 3289.
[59] Rong, X.; Yao, H.; Xia, W.; Du, Y.; Zhou, Y.; Liu, H. ACS Comb. Sci. 2016, 18, 220.
[60] Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810.
[61] Wang, M.; Huang, Z.; Xu, J.; Chi, Y. R. J. Am. Chem. Soc. 2014, 136, 1214.
[62] Liang, Z.-Q.; Wang, D.-L.; Zhang, H.-M.; Ye, S. Org. Lett. 2015, 17, 5140.
[63] Xu, J.; Yuan, S.; Miao, M. Org. Lett. 2016, 18, 3822.
[64] Xiao, Y.; Wang, J.; Xia, W.; Shu, S.; Jiao, S.; Zhou, Y.; Liu, H. Org. Lett. 2015, 17, 3850.
[65] Chen, X.; Yang, S.; Song, B. A.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 11134.
[66] Zhu, T.; Mou, C.; Li, B.; Smetankova, M.; Song, B. A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.
[67] Pellissier, H. Tetrahedron 2008, 64, 1563.
[68] Lu, S.; Poh, S. B.; Siau, W. Y.; Zhao, Y. Angew. Chem., Int. Ed. 2013, 52, 1731.
[69] Telfer, S. Coord. Chem. Rev. 2003, 242, 33.
[70] Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041.
[71] Steinreiber, J.; Faber, K.; Griengl, H. Chemistry 2008, 14, 8060.
[72] Cohen, D. T.; Eichman, C. C.; Phillips, E. M.; Zarefsky, E. R.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 7309.
[73] Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2014, 136, 14698.
[74] Goodman, C. G.; Walker, M. M.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 122.
[75] Wu, Z.; Li, F.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 1629.
[76] Babu, R. S.; O'Doherty, G. A. J. Am. Chem. Soc. 2003, 125, 12406.
[77] Sugawara, K.; Imanishi, Y.; Hashiyama, T. Tetrahe-dron-Asymmetry 2000, 11, 4529.
[78] Chen, X.; Fong, J. Z.; Xu, J.; Mou, C.; Lu, Y.; Yang, S.; Song, B. A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7212.
[79] White, N. A.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 14674.
[80] Zhang, Y.; Du, Y.; Huang, Z.; Xu, J.; Wu, X.; Wang, Y.; Wang, M.; Yang, S.; Webster, R. D.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 2416.
[81] Li, B.-S.; Wang, Y.; Proctor, R. S. J.; Zhang, Y.; Webster, R. D.; Yang, S.; Song, B.; Chi, Y. R. Nat. Commun. 2016, 7.
[82] Reddi, R. N.; Prasad, P. K.; Sudalai, A. Angew. Chem., Int. Ed. 2015, 54, 14150.
[83] Nakano, Y.; Lupton, D. W. Angew. Chem., Int. Ed. 2016, 55, 3135.
[84] Patra, A.; Mukherjee, S.; Das, T. K.; Jain, S.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2017, 56, 2730.
[85] Ungureanu, A.; Levens, A.; Candish, L.; Lupton, D. W. Angew. Chem., Int. Ed. 2015, 54, 11780.

文章导航

/