综述与进展

吩嗪衍生物在分子识别与自组装中的应用进展

  • 李文婷 ,
  • 曲文娟 ,
  • 张海丽 ,
  • 李翔 ,
  • 林奇 ,
  • 姚虹 ,
  • 张有明 ,
  • 魏太保
展开
  • 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室甘肃省高分子材料重点实验室 兰州 730070

收稿日期: 2017-03-17

  修回日期: 2017-05-13

  网络出版日期: 2017-06-02

基金资助

国家自然科学基金(Nos.21662031,21661018,21574104,21262032)资助项目.

Development on Application of Phenazine Derivatives in Molecular Recognition and Self-assembly

  • Li Wenting ,
  • Qu Wenjuan ,
  • Zhang Haili ,
  • Li Xiang ,
  • Lin Qi ,
  • Yao Hong ,
  • Zhang Youming ,
  • Wei Taibao
Expand
  • Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2017-03-17

  Revised date: 2017-05-13

  Online published: 2017-06-02

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21662031,21661018,21574104,21262032).

摘要

种类繁多的吩嗪类化合物对有机化学研究者来说并不陌生,它广泛地存在于有机天然产物中并且具有较好的生物活性,含有天然骨架的吩嗪类化合物的合成过程简单,分子结构的功能化容易.该类化合物具有多个配位点和较大的共轭体系,使其容易形成氢键、离子键以及π-π堆积作用等弱相互作用.因此,吩嗪类化合物在超分子化学中的应用极为广泛.分子识别(MR)和超分子自组装(MS-A)是一直以来是超分子化学的两大重要的研究方向,综述了近几年来吩嗪衍生物在MR和MS-A中的应用进展.根据与吩嗪衍生物所作用的客体的类型的不同将MR分为阳离子识别(CR)、阴离子识别(AR)以及中性分子识别(NMR)三类.根据诱导因素的不同又将MS-A分为以下五类:氢键作用诱导的自组装(HBSA)、堆积作用诱导的自组装(ASA)、金属-配体作用诱导的自组装(M-LSA)、多种作用力协同作用诱导的自组装(MFSA)以及外界环境的导向作用诱导的自组装(OESA).

本文引用格式

李文婷 , 曲文娟 , 张海丽 , 李翔 , 林奇 , 姚虹 , 张有明 , 魏太保 . 吩嗪衍生物在分子识别与自组装中的应用进展[J]. 有机化学, 2017 , 37(10) : 2619 -2639 . DOI: 10.6023/cjoc201703023

Abstract

A wide variety of phenazine compounds are no stranger to organic chemistry researchers, it widely exists in organic natural products together with good biological activity. The synthetic process is simple and the functionalization of molecular structure is comparatively easy of phenazine compounds with natural skeleton. These compounds with multiple sites and large conjugated system, which make it easy to form hydrogen bond, ionic bond and π-π interaction and so on. Therefore, the phenazine compounds have extensive application in supramolecular chemistry. Molecular recognition (MR) and supramolecular self-assembly (MS-A) are two important research direction of supramolecular chemistry. The advances in the research of the development on application of phenazine derivatives in MR and MS-A in recent years are highlighted. According to different type of guest, the MR is grouped into three categories, including anion recognition (AR), cationic recognition (CR) and neutral molecular recognition (NMR). According to the difference of induction factors between guest and phenazine derivatives, the MS-A is grouped into four categories, including self-assembly induced by hydrogen bonding (HBSA), self-assembly induced by accumulation (ASA), self-assembly induced by metal-ligand (M-LSA), self-assembly induced by cooperation of multiple factors (MFSA), and self-assembly induced by the outside environment (OESA).

参考文献

[1] Chowdhury, G.; Sarkar, U.; Pullen, S.; Wilson, W. R.; Rajapakse, A.; Fuchsknotts, T.; Fuchs-Knotts, T.; Gates, S. Chem. Res. Toxicol. 2012, 25, 197.
[2] Saleh, O.; Bonitz, T.; Flinspach, K.; Kulik, A.; Burkard, N.; Mühlenweg, A.; Andreas, V.; Stefan, P.; Michael. L.; Bertolt, G.; Hans-Peter, F.; Lutz, H. Med. Chem. Commun. 2012, 3, 1009.
[3] Zhi, X.; Yang, C.; Zhang, R.; Hu, Y.; Ke, Y.; Xu, H. Ind. Crops Prod. 2013, 42, 520.
[4] Marler, L.; Condasheridan, M.; Cinelli, M. A.; Morrell, A. E.; Cushman, M.; Chen, L.; Huang. K.; Van, B. R.; Pezzuto, J. M. Anticancer Res. 2010, 30, 4873.
[5] Gerardo, P.; Marco, M.; Aida, R.; Anna, A.; Astolfo, Z.; Alessio, C.; Antonio, E. Nat. Prod. Res. 2013, 27, 956.
[6] Conda-Sheridan, M.; Udumula, V.; Endres, J. L.; Harper, C. N.; Jaramillo, L.; Zhong, H. A.; Kenneth, W. B.; Martin, C.-S. Eur. J. Med. Chem. 2016, 125, 710.
[7] Koot, D.; Cromarty, D. Drug Delivery Transl. Res. 2015, 5, 257.
[8] Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Nat. Prod. Res. 2012, 29, 487.
[9] Cloonan, S. M.; Elmes, R. B. P.; Erby, M. L.; Bright, S. A.; Poynton, F. E.; Nolan, D. E.; Quinn, S. J.; Gunnlaugsson, T.; Williams, D. C. J. Med. Chem. 2015, 58, 4494.
[10] Haas, D.; Blumer, C.; Keel, C. Curr. Opin. Biotechnol. 2000, 11, 290.
[11] Laursen, J.; Nielsen, J. Chem. Rev. 2004, 104, 1663.
[12] Bunz, U. H. F. Chem. Eur. J. 2009, 15, 6780.
[13] Bunz, U. H. F.; Engelhart, J. U.; Lindner, B. D.; Schaffroth, M. Angew. Chem., Int. Ed. 2013, 52, 3810.
[14] Miao, Q. Adv. Mater. 2014, 26, 5541.
[15] Xue, H.; Tang, X. J.; Wu, L. Z.; Zhang, L. P.; Tung, C. H. J. Org. Chem. 2005, 70, 9727.
[16] Brombosz, S. M.; Zucchero, A. J.; Phillips, R. L.; Vazquez, D.; Wilson, A.; Bunz, U. H. F. Org. Lett. 2007, 9, 4519.
[17] Feng, X. J.; Tian, P. Z.; Xu, Z.; Chen, S. F.; Wong, M. S. J. Org. Chem. 2013, 78, 11318.
[18] Gill, M. R.; Cecchin, D.; Walker, M. G.; Mulla, R. S.; Battaglia, G.; Smythe, C.; Thomas, J. A. Chem. Sci. 2013, 4, 4512.
[19] Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.
[20] Edwardson, T. G.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Nat. Chem. 2016, 8, 162.
[21] Bisker, G.; Dong, J.; Park, H. D.; Iverson, N. M.; Ahn, J.; Nelson, J. T.; Landry, M. P.; Kruss, S.; Strano, M. S. Nat. Commun. 2016, 7, 10241.
[22] Rónavári, A.; Kovács, D.; Vágvölgyi, C.; Kónya, Z.; Kiricsi, M.; Pfeiffer, I. J. Basic Microbiol. 2016, 56, 557.
[23] Shi, B. B.; Zhang, Y. M.; Wei, T. B.; Lin, Q.; Yao, H.; Zhang, P.; You, X. M. Sens. Actuators, B:Chem. 2014, 190, 555.
[24] Gao, G. Y.; Qu, W. J.; Shi, B. B.; Zhang, P.; Lin, Q.; Yao, H.; Yang, W. L.; Zhang, Y. M.; Wei, T. B. Sens. Actuators, B:Chem. 2014, 26, 39.
[25] Li, W. T.; Wu, G. Y.; Qu, W. J.; Li, Q.; Lou, J. C.; Qu, W. J.; Yao, H.; Zhang, Y. M.; Wei, T. B. Sens. Actuators, B:Chem. 2017, 239, 671.
[26] Wei, T. B.; Wu, G. Y.; Shi, B. B.; Lin, Q.; Yao, H.; Zhang, Y. M. Chin. J. Chem. 2014, 32, 1238.
[27] Zhang, P.; Zhang, Y.; Lin, Q.; Yao, H.; Wei, T. Chin. J. Org. Chem. 2014, 34, 1300(in Chinese). (张鹏, 张有明, 林奇, 姚虹, 魏太保, 有机化学, 2014, 34, 1300.)
[28] Bryant, J. J.; Zhang, Y.; Lindner, B. D.; Davey, E. A.; Appleton, L. A.; Qian, X.; Bunz, U. H. F. J. Org. Chem. 2012, 77, 7479.
[29] Li, G.; Gao, J. K.; Zhang, Q. C. Asian J. Org. Chem. 2014, 3, 203.
[30] Jardim, G. A. M.; Calado, H. D. R.; Cury, L. A.; Júnior, E. N. S. Eur. J. Org. Chem. 2015, 4, 703.
[31] Qi, G.; Fu, C.; Chen, G.; Xu, S; Xu, W. RSC Adv. 2015, 5, 49759.
[32] Zhou, H.; Sun, L.; Chen, W.; Tian, G.; Chen, Y.; Li, Y.; Su, J. Tetrahedron 2016, 72, 2300.
[33] Zhou, H.; Mei, J.; Chen, Y. A.; Chen, C. L.; Chen, W.; Zhang, Z.; Su, J.; Chou, P. T.; Tian, H. Small 2016, 12, 6542.
[34] Gao, G. Y.; Qu, W. J.; Shi, B. B.; Lin, Q.; Yao, H.; Zhang, Y. M.; Chang, J.; Cai, Y.; Wei, T. B. Sens. Actuators, B:Chem. 2015, 213, 501.
[35] Li, W.-T.; Wu, G.-Y.; Qu, W.-J.; Li, Q.; Lou, J.-C.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Sens. Actuators, B:Chem. 2017, 239, 671.
[36] Shive, M. S. C.; Tanuja, B.; Bhaskar, G. Tetrahedron Lett. 2008, 49, 6646.
[37] Wang, C.; Li, G.; Zhang, Q. Tetrahedron Lett. 2013, 54, 2633.
[38] Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. ACS Appl. Mater. Interfaces 2013, 5, 1317.
[39] Yang, L.; Li, X.; Qu, Y.; Qu, W.; Zhang, X.; Hang, Y.; Ågren, H.; Hua, J. Sens. Actuators, B:Chem. 2014, 203, 833.
[40] Li, G.; Wu, Y.; Gao, J.; Li, J.; Zhao, Y.; Zhang, Q. Chem. Asian J. 2013, 8, 1574.
[41] Xu, Q.; Heo, C. H.; Kim, G.; Lee, H. W.; Kim, H. M.; Yoon, J. Angew. Chem., Int. Ed. 2015, 54, 4890.
[42] Wei, T.-B.; Li, W.-T.; Li, Q.; Su, J.-X.; Qu, W.-J.; Lin, Q.; Yao, H.; Zhang, Y-M. Tetrahedron Lett. 2016, 57, 2767
[43] Li, X.; Lin, Q.; Qu, W.; Li Q.; Chen, X.; Li, W.; Zhang, Y.; Yao, H.; Wei, T. Chin. J. Org. Chem. 2017, 37, 889(in Chinese). (李翔, 林奇, 曲文娟, 李乔, 程晓斌, 李文婷, 张有明, 姚虹, 魏太保, 有机化学, 2017, 37, 889.)
[44] Wei, T. B.; Li, W. T.; Li, Q.; Qu, W. J.; Li, H.; Yan, G. T.; Li, Q.; Yao, H.; Zhang, Y. M. RSC Adv. 2016, 6, 43832.
[45] Li, W.-T.; Qu, W.-J.; Zhu, X.; Li, Q.; Zhang, H.-L.; Yao, H.; Lin, Q.; Zhang, Y.-M.; Wei, T.-B. Sci. China, Chem. 2017, 60, 754.
[46] Zhang, H. L; Wei, T. B.; Li, W. T.; Qu, W. J.; Leng, Y. L.; Zhang, J. H.; Lin, Q.; Zhang, Y. M.; Yao, H. Sens. Actuators, B:Chem. 2017, 239, 671.
[47] Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 15846.
[48] Yang, L.; Qu, W.; Zhang, X.; Hang, Y.; Hua, J. Analyst 2015, 140, 182.
[49] Liu, X.; Weinert, Z. J.; Sharafi, M.; Liao, C.; Li, J.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.
[50] Qu, Y.; Zhang, X.; Wang, L.; Yang, H.; Yang, L.; Cao, J.; Hua, J. RSC Adv. 2016, 6, 22389.
[51] Gu, P.-Y.; Wang, C.; Nie, L.; Long, G.; Zhang, Q. RSC Adv. 2016, 6, 37929.
[52] Liu, Y.; Ye, M.; Ge, Q.; Qu, X.; Guo, Q.; Hu, X.; Sun, Q. Anal. Chem. 2016, 88, 1768.
[53] Wang, L.; Liu, S.; Hao, C.; Zhang, X.; Wang, C.; He, Y. Sens. Actuators, B:Chem. 2016, 229, 145.
[54] Zhang, S. G. Biotechnol. Adv. 2002, 20, 321.
[55] Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Chem. Rev. 2015, 115, 6114.
[56] Kazuma, G.; Tetsuo, A.; Hiroyuki, I. Acta Crystallogr. 2007, 63, 17.
[57] Tu, L.; Hsin, R. C.; Hong, Y. L.; Hung, L. L. Cryst. Growth Des. 2012, 12, 5897.
[58] Tran, N. T.; Wilson, S. O.; Franz, A. K. Chem. Commun. 2014, 50, 3738.
[59] Metz, A. E.; Podlesny, E. E.; Carroll, P. J.; Klinghoffer, A. N.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 10601.
[60] Nayak, A.; Pedireddi, V. R. Cryst. Growth Des. 2016, 16, 5966.
[61] Ritter, K.; Pehlken, C.; Sorsche, D.; Rau, S. Dalton Trans. 2015, 44, 8889.
[62] Hugo, V.; Macarena, P.; Eduardo, P. Inorg. Chem. 2015, 54, 3654.
[63] Mohammad, O. B.; Jeffery, D. M.; Haoran, S. Cryst. Growth Des. 2015, 15, 2235.
[64] Shuster, V.; Gambarotta, S.; Nikiforov, G. B.; Budzelaar, P. H. M. Organometallics 2013, 32, 2329.
[65] Bindewald, E.; Lorenz, R.; Hübner, O.; Brox, D.; Herten, D.-P.; Kaifer, E.; Himmel, H.-J. Dalton Trans. 2015, 44, 3467.
[66] Wei, T.; Zhang, H.; Li, W.; Qu, W.; Su, J.; Lin, Q.; Zhang, Y.; Yao, H. Chin. J. Chem. 2017, 35, 1311.
[67] Gao, Y.; Li, H.; Yin, S.; Liu, G.; Cao, L.; Li, Y.; Wang, X.; Ou, Z.; Wang, X. New J. Chem. 2014, 38, 5647.
[68] Liu, Y.; Zhong, K.; Li, Z.; Wang, Y.; Chen, T.; Lee, M.; Jin, L. Y. Polym. Chem. 2015, 6, 7395.
[69] Liang, G.; Wu, G.; Wang, H.; Su, J.; Li, H.; Lin, Q.; Zhang, Y.; Wei, T. J. Inclusion Phenom. Macrocyclic Chem. 2016, 86, 173.
[70] Lee, D. C.; Brownell, L. V.; Jang, K.; Han, S. J.; Robins, K. A. Phys. Chem. Chem. Phys. 2015, 17, 2457.
[71] Jiang, K.; Ma, S.; Bi, H.; Chen, D.; Han, X. J. Mater. Chem. A 2014, 2, 19208.

文章导航

/