可见光催化促进的金属有机基元反应
收稿日期: 2017-04-18
修回日期: 2017-05-22
网络出版日期: 2017-06-07
基金资助
江苏省"青蓝工程"中青年学术带头人培养对象资助项目.
Visible Light Photoredox Catalysis Mediated Elementary Steps in Organometallic Reactions
Received date: 2017-04-18
Revised date: 2017-05-22
Online published: 2017-06-07
Supported by
Project supported by the Qing Lan Project of Jiangsu Province.
吴江 , 李嘉雯 , 李昊 , 朱纯银 . 可见光催化促进的金属有机基元反应[J]. 有机化学, 2017 , 37(9) : 2203 -2210 . DOI: 10.6023/cjoc201704030
Many organometallic reactions involve three elementary steps including oxidative addition, transamination, and reductive elimination. But sometimes very high barrier exists for this approach, leading to the failure of the reactions. The key development in recent reports is the implementation of visible-light photocatalysts as a means to induce the desired redox processes in a mild and selective manner. In this context, organometallic reactions mediated by photoredox catalysts could give rise to novel reactivity, thus this area has drawn much attention in organic chemistry community. In this review, prominent examples from the recent literatures are organized on the basis of the elementary transformation enabled by photoredox catalysis.
[1] (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(b) Hartwig, J. F. Organotransition Metal Chemistry:From Bonding to Catalysis, University Science Books, Herndon, VA, 2010.
[2] For selected reviews on photoredox catalysis:
(a) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(d) Angnes, R. A.; Li, Z.; Correia, C. R. D.; Hammond, G. B. Org. Biomol. Chem. 2015, 13, 9152.
(e) Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(f) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
(g) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
(h) Lang, X.; Zhao, J.; Chen X., Chem. Soc. Rev. 2016, 45, 3026.
(i) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent. Sci. 2016, 2, 293.
(j) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(d) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
(k) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
(l) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
(m) Fabry, D.-C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969.
(n) Zhang, M.; Zhu, C.; Ye, L.-W. Synthesis 2017, 1150.
(o) Zuo, X.; Wu, W.-L.; Su, W.-P. Acta Chim. Sinica 2015, 73, 1298(in Chinese). (左璇, 吴文亮, 苏伟平, 化学学报, 2015, 73, 1298.)
(p) Guan, B.-C.; Xu, X.-L.; Wang, H.; Li, X.-N. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
(q) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85(in Chinese). (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
(r) Roh, G.-B.; Iqbal N.; Cho. E. J. Chin. J. Chem. 2016, 34, 459.
[3] Halpern, J. Acc. Chem. Res. 1970, 3, 386.
[4] Hill, R. H.; Puddephatt, R. J. J. Am. Chem. Soc. 1985, 107, 1218.
[5] (a) Johnson, A.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1976, 1360.
(b) Winston, M. S.; Wolf, W. J.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 7777.
[6] (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
(b) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517.
[7] Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505.
[8] Hopkinson, M. N.; Sahoo, B.; Glorius, F. Adv. Synth. Catal. 2014, 356, 2794.
[9] Xia, Z.; Khaled, O.; Mouriès-Mansuy, V.; Ollivier, C.; Fensterbank, L. J. Org. Chem. 2016, 81, 7182.
[10] Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844.
[11] Um, J.; Yun, H.; Shin, S. Org. Lett. 2016, 18, 484.
[12] Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Chem.-Eur. J. 2016, 22, 5909.
[13] Alcaide, B.; Almendros, P.; Busto, E.; Luna, A. Adv. Synth. Catal. 2016, 358, 1526.
[14] He, Y.; Wu, H.; Toste, F. D. Chem. Sci. 2015, 6, 1194.
[15] Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89.
[16] Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85.
[17] Cornilleau, T.; Hermange, P.; Fouquet, E. Chem. Commun. 2016, 52, 10040.
[18] Gauchot, V.; Lee, A.-L. Chem. Commun. 2016, 52, 10163.
[19] (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
(b) Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.
(c) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624.
[20] (a) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.
(b) Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.
[21] Xuan, J.; Zeng, T.; Chen, J.; Lu, L.; Xiao, W. Chem.-Eur. J. 2015, 21, 4962.
[22] (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
(b) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254.
(c) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.
/
〈 |
|
〉 |