三聚氯氰与低沸点芳香环的Friedel-Crafts封管反应研究
收稿日期: 2017-04-17
修回日期: 2017-05-22
网络出版日期: 2017-06-16
基金资助
四川省自然科学基金重点(No.12ZB128)和西华大学重点(No.Z1123328)资助项目.
Study of the Friedel-Crafts Reaction of Cyanuric Chloride with Low-Boiling Aromatic Ring
Received date: 2017-04-17
Revised date: 2017-05-22
Online published: 2017-06-16
Supported by
Project supported by the Scientific Research Foundation of the Education Department of Sichuan Province (No.12ZB128) and the Key Research Fund Program of Xihua University (No.Z1123328).
研究了三聚氯氰与低沸点芳香环在AlCl3等Lewis酸催化下在水热釜中进行的Friedel-Crafts芳基化反应.通过控制反应温度、底物和催化剂用量,能够以较高的收率,选择性合成2,4-二氯-6-苯基-1,3,5-三嗪和2,4,6-三苯基-1,3,5-三嗪,合成方法具有一定的应用前景.以苯与三聚氯氰为底物进行了动力学计算,并采用密度泛函理论(DFT)方法通过Gaussian软件计算了热力学过渡态,结合动力学和热力学两方面数据详细研究了反应机理.
关键词: 三聚氯氰; 芳香环; Friedel-Crafts芳基化反应; 封管
邹浩 , 王雪丁 , 杨维清 , 张园园 , 陈华 , 王玉良 , 马梦林 , 杜泉 . 三聚氯氰与低沸点芳香环的Friedel-Crafts封管反应研究[J]. 有机化学, 2017 , 37(10) : 2697 -2704 . DOI: 10.6023/cjoc201704027
The cyanuric chloride and benzene Friedel-Crafts arylation using Lewis acid catalyst in high pressure autoclave was studied in this manuscript. The aim compounds 2,4-dichloro-6-phenyl-1,3,5-triazine and 2,4,6-triphenyl-1,3,5-triazine could be got with high selectivity and yields by varying reaction temperature, substrate and catalyst amount, which application was expecting and promising. The transition state was obtained by quantum calculation density functional theory (DFT) method using Gaussian software, and the experimental results and mechanism of this reaction were discussed from the point of dynamics and thermo-dynamics.
[1] (a) Suda, A.; Kawasaki, K.; Komiyama, S.; Isshiki, Y.; Yoon, D. O.; Kim, S. J.; Na, Y. J.; Hasegawa, K.; Fukami, T. A.; Sato, S. Bioorg. Med. Chem. 2014, 22, 892.
(b) Zhou, J.; Min, J.; Li, Z. G.; Anne, Y.; Heather, D.; Tian, G.; Young-Tae, C.; Neville, R. K. Bioorg. Med. Chem. Lett. 2008, 18, 1308.
(c) Sergio, M.; Davide, P.; Paolo, C.; Nicoletta, B.; Diego, M. ChemMedChem 2008, 3, 873.
(d) Rita, M.; Simona, S.; Giovanni, S.; Francesca, V.; Lisa, D. V. J. Med. Chem. 2004, 47, 4649.
(e) Nishimura, N.; Kato, A.; Maeba, I. Carbohydr. Res. 2001, 331, 77.
(f) Klenke, B.; Stewart, M.; Barrett, M. P.; Brun, R.; Gilbert, I. H. J. Med. Chem. 2001, 44, 3440.
(g) Iino, Y.; Karakida, T.; Sugamata, N.; Andoh, H.; Takei, H.; Takahashi, M.; Yaguchi, S.; Matsuno, T.; Takehara, M.; Sakato, M.; Kawashima S.; Morishita, Y. Anticancer Res. 1998, 18, 171.
(h) Li, Y. J.; Shi, X. L.; Gao, L. X.; Jin, K.; Sheng, L.; Wu, J. H.; Peng, L. N.; Li, J. Chin. J. Org. Chem. 2015, 35, 191(in Chinese). (李英俊, 史相玲, 高立信, 靳焜, 盛丽, 吴疆红, 彭立娜, 李佳, 有机化学, 2015, 35, 191.)
[2] (a) Naik, S.; Kumaravel, M.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem. 2014, 53, 1370.
(b) Xiao, C. Y.; Li, Y. M.; Lun, H. J.; Cui, C. Y.; Xu, Y. Q. J. Solid State Chem. 2013, 208, 127.
[3] Wojciech, C.; Joanna, P.; Roland, S.; Mariola, K.; Edyta, G. Dyes Pigm. 2006, 71, 224.
[4] (a) Roy, B.; De, N.; Majumdar, K. C. Chem. Eur. J. 2012, 18, 14560.
(b) Majumdar, K. C.; De, N.; Roy, B.; Bhowmik, A. Liq. Cryst. 2010, 37, 1459.
(c) Kotha, S.; Kashinath, D.; Kumar, S. Tetrahedron Lett. 2008, 49, 5419.
(d) Lee, C. H.; Yamamoto, T. Bull. Chem. Soc. Jpn. 2002, 75, 615.
(e) Goldmann, D.; Janietz, D.; Schmidt, C.; Wendroff, J. H. Angew. Chem., Int. Ed. 2000, 39, 1851.
[5] (a) Hernandez-Juarez, M.; Vaquero, M.; Alvarez, E.; Salazar, V.; Suarez, A. Dalton Trans. 2013, 42, 351.
(b) Santra, P. K.; Sagar, P. J. Mol. Catal. A:Chem. 2003, 197, 37.
[6] Wang, G. R.; Zeng, H. P. Chin. J. Org. Chem. 2009, 29, 1115(in Chinese). (王光荣, 曾和平, 有机化学, 2009, 29, 1115.)
[7] Luo, H. M.; Wang, H.; Zeng, Z.; Zeng, H. P. Chin. J. Org. Chem. 2013, 33, 916(in Chinese). (罗浩敏, 王辉, 曾卓, 曾和平, 有机化学, 2013, 33, 916.)
[8] Hirt, R.; Nidecker, H.; Berchtold, R.; Schönholzer, G. Helv. Chim. Acta 1950, 33, 1365.
[9] (a) Janietz, D.; Bauer, M. Synthesis 1993, 33.
(b) Isfahani, A. L.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Khosropour, A. R.; Moghadam, M.; Tangestaninejad, S.; Kia, R. Adv. Synth. Catal. 2013, 355, 957.
[10] Forsberg, J. H.; Spaziano, V. T.; Klump, S. P.; Sanders, K. M. J. Heterocycl. Chem. 1988, 25, 767.
[11] Biswas, S.; Batra, S. Eur. J. Org. Chem. 2012, 18, 3492.
[12] Xie, F.; Chen, M.; Wang, X.; Jiang, H.; Zhang, M. Org. Biomol. Chem. 2014, 12, 2761.
[13] Guo, W. Org. Biomol. Chem. 2015, 13, 10285.
[14] Huang, W.; Tang, F. S.; Li, B.; Su, J. H.; Tian, H. J. Mater. Chem. 2014, 6, 1141.
[15] Conn, G.; Eisler, S. Org. Lett. 2011, 13, 5080.
[16] (a) Bernhard, M.; Gerhard, Z. US 5322941, 1994[Chem. Abstr. 1994, 121, 157678].
(b) Hou, B. Mod. Plast. Process. Appl. 2002, 14, 24(in Chinese). (侯博, 现代塑料加工应用, 2002, 14, 24.)
[17] Ishikawa, M.; Yamazaki, Y.; Koyama, T. J. Ind. Chem. 1970, 73, 550.
/
〈 |
|
〉 |