过渡金属镍与可见光双催化体系的研究进展
收稿日期: 2017-04-30
修回日期: 2017-06-05
网络出版日期: 2017-06-16
基金资助
辽宁省教育厅一般项目基金(No.L2016022)及辽宁石油化工大学引进人才科研启动基金(No.2016XJJ-006)资助项目.
Recent Progress on the Nickel/Photoredox Dual Catalysis
Received date: 2017-04-30
Revised date: 2017-06-05
Online published: 2017-06-16
Supported by
Project supported by the Fund of Liaoning Provincial Department of Education (No.L2016022),and the Talent Scientific Research Found of Liaoning Shihua University (No.2016XJJ-006).
阮利衡 , 董振诚 , 陈春欣 , 吴爽 , 孙京 . 过渡金属镍与可见光双催化体系的研究进展[J]. 有机化学, 2017 , 37(10) : 2544 -2554 . DOI: 10.6023/cjoc201704051
A dual-catalysis system merging the visible light photoredox with transition metal nickel catalysis enables a new strategy to build the novel carbon-carbon and carbon-heteroatom bond, which are not generally possible via using either photoredox or nickel catalysis alone. This mild, green and promising protocol has attracted the interest of some scientific researchers. In this review, the recent progress of nickel/photoredox dual catalysis is summarized.
[1] Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.
[2] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[3] Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[4] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.
[5] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.
[6] Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239136.
[7] Prier, C. K.; Rankic, D. A.; Macmillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[8] Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
[9] Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
[10] Liu, W.; Zheng, X.; Zeng, J.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1(in Chinese). (刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
[11] Cheng, X.; Hu, X.; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251(in Chinese). (程骁恺, 胡新根, 陆展, 有机化学, 2017, 37, 251.)
[12] Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85(in Chinese). (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[13] Ding, K.; Xiao, W.; Wu, L. Acta Chim. Sinica 2017, 75, 5(in Chinese). (丁奎岭, 肖文精, 吴骊珠, 化学学报, 2017, 75, 5.)
[14] Pei, P.; Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
[15] Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
[16] Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
[17] Zhang, J. Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41.)
[18] Roh, G.; Iqbal, N. Cho, E. Chin. J. Chem. 2016, 34, 459.
[19] Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
[20] Tellis, J.; Kelly, C.; Primer, D.; Jouffroy, M.; Patel, N.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
[21] Gui, Y.; Sun, L.; Lu, Z.; Yu, D. Org. Chem. Front. 2016, 3, 522.
[22] Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.
[23] Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
[24] Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.
[25] Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.
[26] Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.
[27] Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.
[28] Gu, L.; Jin, C.; Liu, J.; Zhang, H.; Yuan, M.; Li, G. Green Chem. 2015, 18, 1201.
[29] Oderinde, M. S.; Varela-Alvarez, A.; Aquila, B.; Robbins, D. W.; Johannes, J. W. J. Org. Chem. 2015, 80, 7642.
[30] Feng, Q.; Tong, R. J. Am. Chem. Soc. 2017, 139, 6177.
[31] Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[32] Huang, H.; Li, X.; Yu, C.; Zhang, Y.; Mariano, P. S.; Wang, W. Angew. Chem., Int. Ed. 2017, 56, 1500.
[33] McTiernan, C. D.; Leblanc, X.; Scaiano, J. C. ACS Catal. 2017, 7, 2171.
[34] Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[35] Khatib, M. E.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254.
[36] Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Ko-zlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
[37] Gutierrez-Bonet, A.; Tellis, J. C. Matsui, J. K.; Vara, B. A.; Mo-lander, G. A. ACS Catal. 2016, 6, 8004.
[38] Tellis, J. C.; Amanu, J.; Molander, G. A. Org. Lett. 2016, 18, 2994.
[39] Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Chem. Eur. J. 2016, 22, 120.
[40] Yamashita, Y.; Tellis, J. C.; Molander, G. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12026.
[41] Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
[42] Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426.
[43] Karakaya, I.; Primer, D. N.; Molander, G. A. Org. Lett. 2015, 17, 3294.
[44] Karimi-Nami, R.; Tellis, J. C.; Molander, G. A. Org. Lett. 2016, 18, 2572.
[45] Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 436.
[46] Vara, B. A.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 3955.
[47] Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
[48] Corce, V.; Chamoreau, L.; Derat, E.; Coddard, J.; Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.
[49] Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475.
[50] Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. Org. Lett. 2016, 18, 764.
[51] Leveque, C.; Corce, V.; Chenneberg, L.; Ollivier, C.; Fensterbank. Eur. J. Org. Chem. 2017, 2017, 2118.
[52] Jouffroy, M.; Davies, G. H.; Molander, G. A. Org. Lett. 2016, 18, 1606.
[53] Patel, N. R.; Molander, G. A. J. Org. Chem. 2016, 81, 7271.
[54] Vara, B. A.; Jouffroy, M.; Molander, G. A. Chem. Sci. 2017, 8, 530.
[55] Jouffroy, M.; Kelly, C. B.; Molander, G. A. Org. Lett. 2016, 18, 876.
[56] Gutiérrez-Bonet, Á.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
[57] Duan, Z.; Li, W.; Lei, A. Org. Lett. 2016, 18, 4012.
[58] Paul, A.; Smith, M.; Vannucci. J. Org. Chem. 2017, 82, 1996.
[59] Joe, C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040.
[60] Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12719.
[61] Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.D.; MacMillan, D. W. C. Science 2016, 352, 1304.
[62] Gui, Y. Y.; Liao, L. L.; Sun, L.; Zhang, Z.; Ye, J. H.; Shen, G.; Lu, Z. P.; Zhou, W. J.; Yu, D. G. Chem. Commun. 2017, 53, 1192.
[63] Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
[64] Xuan, J.; Zeng, T. T.; Chen, J. R.; Lu, L. Q.; Xiao, W. J. Chem. Eur. J. 2015, 21, 4962.
[65] Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.
[66] Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 9531.
[67] Corcoran, E. B.; Piront, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Science 2016, 353, 279.
[68] Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.
[69] Welin, E. R.; Le, C.; Arias-Rotondo, D. M.; McCusker, J. K., MacMillan, D. W. C. Science 2017, 355, 380.
[70] Ding, W.; Lu, L.; Zhou, Q.; Wei, Y.; Chen, J.; Xiao, W. J. Am. Chem. Soc. 2017, 139, 63.
/
〈 |
|
〉 |