综述与进展

应用于构建优势杂环骨架的交叉脱氢偶联反应

  • 胡玮 ,
  • 龙亚秋
展开
  • 中国科学院上海药物研究所 受体结构和功能重点实验室 上海 201203

收稿日期: 2017-03-20

  修回日期: 2017-06-14

  网络出版日期: 2017-07-07

基金资助

国家自然科学基金(Nos.81325020,81761128022)资助项目.

Cross-Dehydrogenative Coupling Reactions Applied in the Construction of Privileged Heterocycles

  • Hu Wei ,
  • Long Yaqiu
Expand
  • CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203

Received date: 2017-03-20

  Revised date: 2017-06-14

  Online published: 2017-07-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81325020, 81761128022).

摘要

交叉脱氢偶联反应(CDC)是一类不需要预先官能团化、两分子C-H键直接偶联的反应,它具有合成简便、原子经济性高和绿色环保等优点.杂环结构存在于多种药物分子及天然产物中,是承载多种药理活性的药物亚结构,因此被称为类药性优势骨架.采用CDC的策略合成类药性优势骨架具有多种优势,基于优势骨架的类药性化合物库也是发现先导化合物的一种有效途径.按照合成的杂环结构进行分类,对吲哚、吡咯、吡唑、呋喃、喹唑啉等杂环的CDC合成方法进行介绍,综述了近年来CDC反应在类药性优势骨架合成中的应用和特点.

本文引用格式

胡玮 , 龙亚秋 . 应用于构建优势杂环骨架的交叉脱氢偶联反应[J]. 有机化学, 2017 , 37(11) : 2850 -2858 . DOI: 10.6023/cjoc201703033

Abstract

The reactions in which a new C-C bond is formed via a direct coupling of two C-H bonds are termed as cross dehydrogenative coupling (CDC). The coupling reactions would not need the pre-activation of the inert C-H bonds by any func-tional groups, featured with straightforwardness, atom-and step-economy and environmently benigness. Heterocycles are widely found in bioactive natural products and pharmaceuticals, designated as drug-like privileged scaffolds since they endowed diverse pharmacological effects. Preparation of these privileged structures by means of CDC confers distinctive advantages and enhances the discovery of lead compounds in medicinal chemistry. The application of CDC reactions in the synthesis of the heterocycles of pharmaceutical interest in recent years is summarized, focused on the construction of privileged scaffolds, such as indole, pyrrole, quinazoline, quinoxaline and the middle size and poly ring systems.

参考文献

[1] (a) Wang, M.; Wang, Z.; Shang, M.; Dai, H. Chin. J. Org. Chem. 2015, 35, 570(in Chinese). (王明明, 王子潇, 商明, 戴辉雄, 有机化学, 2015, 35, 570.)
(b) Lu, B.; Li, X.; Lin, Y. Chin. J. Org. Chem. 2015, 35, 2275(in Chinese). (卢贝丽, 李现艳, 林咏梅, 有机化学, 2015, 35, 2275.)
(c) Ding, Z.; Tan, Q.; Liu, B.; Zhang, K.; Xu, B. Acta Chim. Sinica 2015, 73, 1302(in Chinese). (丁正伟, 谭启涛, 刘秉新, 张可, 许斌, 化学学报, 2015, 73, 1302.)
(d) Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223(in Chinese). (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.)
[2] (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
(b) Li, G.; Nakamura, H. Angew. Chem., Int. Ed. 2016, 55, 6758.
[3] (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.
(b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56.
(c) Zhang, Y.; Li, C.-J. J. Am. Chem. Soc 2006, 128, 4242.
[4] (a) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 6174.
(b) Han, W.; Mayer, P.; Ofial, A. R. Angew. Chem., Int. Ed. 2011, 50, 2178.
(c) Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 3267.
(d) Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.
(e) Zhou, L.; Xu, B.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 9092.
[5] Gensch, T.; Klauck, F. J. R.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 11287.
[6] Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822.
[7] Hu, W.; Lin, J.-P.; Song, L.-R.; Long, Y.-Q. Org. Lett. 2015, 17, 1268.
[8] Zhao, M.; Wang, F.; Li, X. Org. Lett. 2012, 14, 1412.
[9] Vanjari, R.; Guntreddi, T.; Kumar, S.; Singh, K. N. Chem. Commun. 2015, 51, 366.
[10] (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
(b) Zeng, L.-F.; Wang, Y.; Kazemi, R.; Xu, S.; Xu, Z.-L.; Sanchez, T. W.; Yang, L.-M.; Debnath, B.; Odde, S.; Xie, H.; Zheng, Y.-T.; Ding, J.; Neamati, N.; Long, Y.-Q. J. Med. Chem 2012, 55, 9492.
(c) Lam, T.; Hilgers, M. T.; Cunningham, M. L.; Kwan, B. P.; Nelson, K. J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K. J.; Finn, J. J. Med. Chem. 2014, 57, 651.
[11] Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[12] Xue, D.; Long, Y.-Q. J. Org. Chem. 2014, 79, 4727.
[13] Zhu, C.; Yang, B.; Qiu, Y.; Backvall, J. E. Angew. Chem., Int. Ed. 2016, 55, 14405.
[14] (a) Cheng, Y.; Shen, J.; Peng, R.-Z.; Wang, G.-F.; Zuo, J.-P.; Long, Y.-Q. Bioorg. Med. Chem. Lett. 2016, 26, 2900.
(b) Zhi, Y.; Gao, L.-X.; Jin, Y.; Tang, C.-L.; Li, J.-Y.; Li, J.; Long, Y.-Q. Bioorg. Med. Chem. 2014, 22, 3670.
[15] (a) Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 9220.
(b) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.
(c) Gao, S.; Wu, Z.; Fang, X.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3906.
(d) Chen, J.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 3951.
(e) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 2875.
[16] Würtz, S.; Rakshit, S.; Neumann, J. J.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 120, 7340.
[17] Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.
[18] Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.
[19] Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2010, 46, 2823.
[20] Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264.
[21] Wei, Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. 2012, 134, 9098.
[22] Jiang, L.; Jin, W.; Hu, W. ACS Catal. 2016, 6, 6146.
[23] Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J.-I. J. Med. Chem. 2004, 47, 3693.
[24] Wu, C.-H.; Hung, M.-S.; Song, J.-S.; Yeh, T.-K.; Chou, M.-C.; Chu, C.-M.; Jan, J.-J.; Hsieh, M.-T.; Tseng, S.-L.; Chang, C.-P.; Hsieh, W.-P.; Lin, Y.; Yeh, Y.-N.; Chung, W.-L.; Kuo, C.-W.; Lin, C.-Y.; Shy, H.-S.; Chao, Y.-S.; Shia, K.-S. J. Med. Chem. 2009, 52, 4496.
[25] Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.
[26] Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.
[27] (a) Zhang, G.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2013, 52, 2559.
(b) Wu, X.; Wang, M.; Zhang, G.; Zhao, Y.; Wang, J.; Ge, H. Chem. Sci. 2015, 6, 5882.
[28] Murarka, S.; Studer, A. Org. Lett. 2011, 13, 2746.
[29] Ye, J. T.; Ma, S. M. Acc. Chem. Res. 2014, 47, 989.
[30] Xiao, T.; Li, L.; Lin, G.; Mao, Z.-W.; Zhou, L. Org. Lett. 2014, 16, 4232.
[31] Zhang, Z.; Dai, Z.; Ma, X.; Liu, Y.; Ma, X.; Li, W.; Ma, C. Org. Chem. Front. 2016, 3, 799.
[32] Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.
[33] Zhang, Z.; Xie, C.; Tan, X.; Song, G.; Wen, L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.
[34] Sun, M.; Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 8155.
[35] (a) Dhiman, S.; Mishra, U. K.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 7737.
(b) Garkhedkar, A. M.; Senadi, G. C.; Wang, J. J. Org. Lett. 2017, 19, 488.
(c) Cheng, J.; Li, W. P.; Duan, Y. Q.; Cheng, Y. X.; Yu, S. Y.; Zhu, C. J. Org. Lett. 2017, 19, 214.
[36] Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.

文章导航

/