综述与进展

氰胺类化合物的合成及其应用研究进展

  • 黎吉辉 ,
  • 李正章 ,
  • 张玉苍 ,
  • 许文茸 ,
  • 徐树英
展开
  • a 海南大学热带岛屿资源先进材料教育部重点实验室 海口 570228;
    b 海南大学材料与化工学院 海口 570228;
    c 海南出入境检验检疫局技术中心 海口 570100

收稿日期: 2017-06-02

  修回日期: 2017-06-26

  网络出版日期: 2017-07-14

基金资助

海南省自然科学基金(Nos.20162015,217008)资助项目.

Progress on the Synthesis and Applications of Cyanamides

  • Li Jihui ,
  • Li Zhengzhang ,
  • Zhang Yucang ,
  • Xu Wenrong ,
  • Xu Shuying
Expand
  • a Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources in Hainan University, Haikou 570228;
    b College of Materials and Chemical Engineering, Hainan University, Haikou 570228;
    c Inspection Quarantine Technology Center of Hainan Entry-Exit Inspection Quarantine Bureau, Haikou 570100

Received date: 2017-06-02

  Revised date: 2017-06-26

  Online published: 2017-07-14

Supported by

Project supported by the Natural Science Fundation of Hainan Province (Nos. 20162015, 217008).

摘要

氰胺类化合物(R1R2NCN)是一种带有氨基和氰基双官能团的重要精细化工原料,广泛应用于医药、农药、化肥、保健产品和材料等领域,受到合成化学家和药物化学家们的广泛关注.近年来对于氰胺合成方法和其反应的研究发展迅速,不断有新的氰胺合成方法和以其为原料合成各种含氮化合物的反应涌现.本文主要综述了近二十年来发展的氰胺合成方法及氰胺在有机合成中的应用,全面介绍氰胺的各种合成方法和反应,归纳总结他们的特点、规律和优劣势,为氰胺的合成方法和反应性的研究提供帮助.

本文引用格式

黎吉辉 , 李正章 , 张玉苍 , 许文茸 , 徐树英 . 氰胺类化合物的合成及其应用研究进展[J]. 有机化学, 2017 , 37(8) : 1903 -1915 . DOI: 10.6023/cjoc201706003

Abstract

Cyanamides are an important class of fine chemicals containing amino and cyano functionalities, which have been widely used for the synthesis of pharmaceuticals, agricultural chemicals, health products and materials, and attracted considerable attention from both organic synthetic chemists and medicinal chemists. Great advances in the synthesis and transformations of cyanamides were made, a diversity of synthetic methods and transformations of cyanamides were developed in the past two decades. In this paper, various synthetic methods and reactions of cyanamides are introduced comprehensively, their characteristics, rules, advantages and disadvantages are also summarized and discussed for the development of new synthetic methods and reactions of cyanamides.

参考文献

[1] Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. Z.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950.
[2] (a) Lainé, D.; Palovich, M.; McCleland, B.; Petitjean, E.; Delhom, I.; Xie, H.; Deng, J.; Lin, G.; Davis, R.; Jolit, A.; Nevins, N.; Zhao, B.; Villa, J.; Schneck, J.; McDevitt, P.; Midgett, R.; Kmett, C.; Umbrecht, S.; Peck, B.; Davis, A. B.; Bettoun, D. ACS Med. Chem. Lett. 2011, 2, 142.
(b) Falgueyrat, J.-P.; Oballa, R. M.; Okamoto, O.; Wesolowski, G.; Aubin, Y.; Rydzewski, R. M.; Prasit, P.; Riendau, D.; Rodan, S. B.; Percival, M. D. J. Med. Chem. 2001, 44, 94.
[3] Feldman, P. L.; Brackeen, M. F.; Cowan, D. J.; Marron, B. E.; Schoenen, F. J.; Stafford, J. A.; Suh, E. M.; Domanico, P. L.; Rose, D.; Leesnitzer, M. A.; Brawley, E. S.; Strickland, A. B.; Vergese, M. W.; Connolly, K. M.; Bateman-Fite, R.; Noel, S. L.; Sekut, L.; Stimpson, S. A. J. Med. Chem. 1995, 38, 1505.
[4] (a) Larraufie, M. H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E. Synthesis 2012, 44, 1279.
(b) Nekrasov, D. D. Russ. J. Org. Chem. 2004, 40, 1387.
[5] Crutchley, R. J. Coord. Chem. Rev. 2001, 219, 125.
[6] Boatright, L. G.; Mackay, J. S. US 2721786, 1955[Chem. Abstr. 1956, 50, 21846].
[7] (a) Nekrasov, D. D. Russ. J. Org. Chem. 2004, 40, 1387.
(b) Larraufie, M. H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E. Synthesis 2012, 44, 1279.
[8] Braun, von J. Ber. Dtsch. Chem. Ges. 1907, 40, 3914.
[9] Morgan, T.; Ray, N. C.; Parry, D. M. Org. Lett. 2002, 4, 597.
[10] Nath, J.; Patel, B. K.; Jamir, L.; Sinha, U. B.; Satyanarayan, K. V. V. V. Green Chem. 2009, 11, 1503.
[11] Ramana, T.; Saha, P.; Das, M.; Punniyamurthy, T. Org. Lett. 2010, 12, 84.
[12] Sahoo, S. K.; Jamir, L.; Guin, S.; Patel, B. K. Adv. Synth. Catal. 2010, 352, 2538.
[13] Zhu, C.; Xia, J.-B.; Chen, C. Org. Lett. 2014, 16, 247.
[14] Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.; Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Org. Lett. 2014, 16, 892.
[15] Ayres, J. N.; Ling, K. B.; Morrill, L. C. Org. Lett. 2016, 18, 5528.
[16] Kamijo, S.; Jin, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 9453.
[17] Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 11940.
[18] Kamijo, S.; Jin, T. Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 1780.
[19] Stolley, R. M.; Guo, W.; Louie, J. Org. Lett. 2012, 14, 322.
[20] Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.
[21] Li, J.; Zheng, X.; Li, W.; Zhou, W.; Zhu W.; Zhang, Y. New J. Chem. 2016, 40, 77.
[22] (a) Reddy, N. L.; Fan, W.; Magar, S. S.; Perlman, M. E.; Yost, E.; Zhang, L.; Berlove, D.; Fischer, J. B.; Burke-Howie, K.; Wolcott, T.; Durant, G. J. J. Med. Chem. 1998, 41, 3298.
(b) Snider, B. B.; O'Hare, S. M. Tetrahedron Lett. 2001, 42, 2455.
(c) Basterfield, S.; Rodman, F. B. S.; Tomecko J. W. Can. J. Res. 2011, 17, 390.
[23] Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E. Angew. Chem., Int. Ed. 2009, 48, 3116.
[24] Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261.
[25] Lou, Z.; Wu, X.; Yang, H.; Zhu, C.; Fu, H. Adv. Synth. Catal. 2015, 357, 3961.
[26] Rassadin, V. A.; Zimin, D. P.; Raskil'dina, G. Z.; Ivanov, A. Y.; Boyarskiy, V. P.; Zlotskiib S. S.; Kukushkin, V. Y. Green Chem. 2016, 18, 6630.
[27] Larraufie, M.-H.; Ollivier, C.; Fensterbank, L.; Malacria, M.; Lacte, E. Angew. Chem., Int. Ed. 2010, 49, 2178.
[28] Maestri, G.; Larraufie, M.-H.; Ollivier, C.; Malacria, M.; Fensterbank, L.; Lacôte, E. Org. Lett. 2012, 14, 5538.
[29] Li, J.; Neuville, L. Org. Lett. 2013, 15, 6124.
[30] Tran, L. Q.; Li, J.; Neuville, L. J. Org. Chem. 2015, 80, 6102.
[31] Li, J.; Wang, H.; Hou, Y.; Yu, W.; Xu, S.; Zhang, Y. Eur. J. Org. Chem. 2016, 2388.
[32] Vollhardt, K. P. C.; Naiman, A. US 4328343, 1982[Chem. Abstr 1978, 90, 186806].
[33] Boñaga, L. V. R.; Zhang H.-C.; Maryanoff B. E. Chem. Commun. 2004, 2394.
[34] (a) Stolley, R. M.; Maczka, M. T.; Louie J. Eur. J. Org. Chem. 2011, 3815.
(b) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem., Int. Ed. 2011, 50, 10694.
[35] Wang, C.; Wang, D.; Xu, F.; Pan, B.; Wan, B. J. Org. Chem. 2013, 78, 3065.
[36] Lane, T. K.; D'Souza, B. R.; Louie, J. J. Org. Chem. 2012, 77, 7555.
[37] Lane, T. K.; Nguyen, M. H.; D'Souza, B. R.; Spahn, N. A.; Louie, J. Chem. Commun. 2013, 49, 7735.
[38] Hashimoto, T.; Ishii, S.; Yano, R.; Miura, H.; Sakata, K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901.
[39] Onodera, G.; Shimizu, Y.; Kimura, J.; Kobayashi, J.; Ebihara, Y.; Kondo, K.; Sakata, K.; Takeuchi, R. J. Am. Chem. Soc. 2012, 134, 10515.
[40] Ye, F.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Lett. 2017, 19, 1104.
[41] Rassadin, V. A.; Boyarskiy, V. P.; Kukushkin Y. V. Org. Lett. 2015, 17, 3502.
[42] (a) Hughes, T. V.; Hammond, S. D.; Cava, M. P. J. Org. Chem. 1998, 63, 401.
(b) Hughes, T. V.; Cava, M. P. J. Org. Chem. 1999, 64, 313.
[43] Wu, Y.-Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795.
[44] Anbarasan, P.; Neumann, H.; Beller, M. Chem.-Eur. J. 2010, 16, 4725.
[45] (a) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519.
(b) Anbarasan, P.; Neumann, H.; Beller, M. Chem.-Eur. J. 2011, 17, 4217.
(c) Cai, Y.; Qian, X.; Rérat, A.; Auffrant, A.; Gosmini C. Adv. Synth. Catal. 2015, 357, 3419.
(d) Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 5608.
(e) Gong, T.-J.; Xiao, B.; Cheng, W.-M.; Su, W.; Xu, J.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.
(f) Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960.
(g) Gu, L.-J.; Jin, C.; Wang, R.; Ding, H.-Y. ChemCatChem 2014, 6, 1225.
(h) Mishra, N. K.; Jeong, T.; Sharma, S.; Shin, Y.; Han, S.; Park, J.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kima, I. S. Adv. Synth. Catal. 2015, 357, 1293.
(i) Chaitanya, M.; Anbarasan, P. J. Org. Chem. 2015, 80, 3695.
(j) Zhu, X.; Shen, X.J.; Tian, Z.-Y.; Lu, S.; Tian, L.-L.; Liu, W.-B.; Song, B.; Hao, X.-Q. J. Org. Chem. 2017, 82, 6022.
[46] Fukumoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. J. Am. Chem. Soc. 2009, 131, 38.
[47] Liao, Z.-Y.; Liao, P.-Y.; Chien, T.-C. Chem. Commun. 2016, 52, 14404.
[48] Rao, B.; Zeng, X. Org. Lett. 2014, 16, 314.
[49] Pan, Z.; Pound, S. M.; Rondla, N. R.; Douglas, C. J. Angew. Chem., Int. Ed. 2014, 53, 5170.
[50] Miyazaki, Y.; Ohta, N.; Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 3732.
[51] Wang, R.; Falck, J. R. Chem. Commun. 2013, 49, 6516.
[52] (a) Servais, A.; Azzouz, M.; Lopes, D.; Courillon, C.; Malacria, M. Angew. Chem., Int. Ed. 2007, 46, 576.
(b) Beaume, A.; Christine Courillon, C.; Derat, E.; Malacria, M. Chem.-Eur. J. 2008, 14, 1238.
[53] Larrafie, M.-H.; Courillon, C.; Ollivier, C.; Lacôte, E.; Malacria, M.; Fensterbank, L. J. Am. Chem. Soc. 2010, 132, 4381.
[54] Sävmarker, J.; Rydfjord, J.; Gising, J.; Odell, L. R.; Larhed, M. Org. Lett. 2012, 14, 2394.
[55] Rydfjord, J.; Svensson, F.; Trejos, A.; Söjberg, P. J. R.; Sköld, C.; Sävmarker, J.; Odell, L. R.; Larhed, M. Chem.-Eur. J. 2013, 19, 13803.
[56] Guin, S.; Rout, S. K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 46, 2559.

文章导航

/