综述与进展

稳定硼烷加合物在有机硼化物合成中的应用研究进展

  • 杨吉民 ,
  • 李子奇 ,
  • 朱守非
展开
  • a 南开大学化学学院 元素有机化学研究所 元素有机化学国家重点实验室 天津 300071;
    b 天津化学化工协同创新中心 天津 300071

收稿日期: 2017-05-23

  修回日期: 2017-07-18

  网络出版日期: 2017-08-09

基金资助

国家自然科学基金(Nos.21625204,21421062,21290182)、国家重点基础研究发展计划(973项目,No.2012CB821600)、教育部"111计划"(No.B06005)和国家特支计划资助项目.

Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons

  • Yang Jimin ,
  • Li Ziqi ,
  • Zhu Shoufei
Expand
  • a State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071;
    b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071

Received date: 2017-05-23

  Revised date: 2017-07-18

  Online published: 2017-08-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21625204,21421062,21290182),the National Basic Research Program of China (973 Program,No.2012CB821600),the "111" Project of the Ministry of Education of China (No.B06005),and the National Program for Support of Top-notch Young Professionals.

摘要

有机硼化合物在合成化学、材料科学、生命健康等领域都有广泛应用,因此有机硼化合物的合成一直是研究热点.目前,催化C-B键形成反应通常使用联硼酸频哪醇酯(B2Pin2)、频哪醇硼烷(HBPin)、儿茶酚硼烷(HBCat)等作为硼试剂.相比于传统的硼试剂,硼烷与胺、膦或N-杂环卡宾等强Lewis碱的加合物(统称为稳定硼烷加合物)具有易于合成、稳定性高、易操作等特点,其作为硼试剂参与的有机硼化合物的合成最近受到越来越多的关注,已被成功用于烯(炔)烃的硼氢化、C-H键硼化、卡宾对B-H键的插入、硼自由基串联环化、取代等反应中,为有机硼化合物的合成提供了新的思路和方法.以反应类型为线索,系统综述了稳定硼烷加合物在有机硼化物合成中的应用研究进展.

本文引用格式

杨吉民 , 李子奇 , 朱守非 . 稳定硼烷加合物在有机硼化物合成中的应用研究进展[J]. 有机化学, 2017 , 37(10) : 2481 -2497 . DOI: 10.6023/cjoc201705034

Abstract

Organoboron compounds are wildly used in organic synthesis, materials science, life and health science, etc. The development of synthetic methodologies of organoborons has therefore gained intense attention nowadays. Typically, Bis(pinacolato)diboron (B2Pin2), pinacolborane (HBpin) and catecholatoborane (HBCat) are predominantly used as boron reagents in catalytic C-B bond forming reactions. Different from the above traditional boron reagents, borane adducts with strong Lewis bases, such as amines, phosphines, and N-heterocyclic carbenes, are promising boron reagents because of their readily accessibility, relatively high stability, and easy operation. Moreover, the different chemical properties of these stable borane adducts towards the traditional boron reagents provide possibilities for development of new C-B bond formation reactions. The applications of the stable borane adducts as terminal boron reagents in hydroboration of alkenes or alkynes, C-H bond borylation, carbene insertion into B-H bonds, cascade cyclization initiated by boryl radicals and substitutions, which provide new methods for the preparation of organoborons are reviewed in this paper.

参考文献

[1] (a) Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197.
(b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
(c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
[2] For a recent review, see:(a) Yang, X.; Xie, Z.; He, J.; Yu, L. Chin. J. Org. Chem. 2015, 35, 603(in Chinese). (阳香华, 谢珍茗, 何军, 余林, 有机化学, 2015, 35, 603.) For selected examples, see:
(b) Blaquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 14034.
(c) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 14653.
(d) Zhou, Q.; Zhang, L.; Meng, W.; Feng, X.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.
(e) Li, S.; Meng, L.; Du, H. Org. Lett. 2017, 19, 2604.
[3] Curran, D. P.; Solovyev, A.; Brahmi, M. M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011, 50, 10294.
[4] For selected reviews, see:(a) Ramachandran, P. V., Brown, H. C. Organoboranes for Syntheses, ACS Symposium Series 783, American Chemical Society, Washington, DC, 2001.
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(c) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
(d) Jäkle, F. Chem. Rev. 2010, 110, 3985.
(e) Dembitsky, V. M.; Quntar, A. A. A. A.; Srebnik, M. Chem. Rev. 2011, 111, 209.
(f) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(g) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
[5] For reviews, see:(a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
(b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320.
(c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
(e) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[6] (a) Welch, C. N.; Shore, G. S. Inorg. Chem. 1968, 7, 225.
(b) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1975, 97, 5249.
[7] Zaidlewicz, M.; Brown, H. C.; Siebert, W. Advances in Boron Chemistry, The Royal Society of Chemistry, Cambridge, 1997, 171.
[8] (a) Schaeffer, G. W.; Anderson, E. R. J. Am. Chem. Soc. 1949, 71, 2143.
(b) Nainan, K. C.; Ryschkewitsch, G. E. Inorg. Chem. 1969, 8, 2671.
[9] (a) Baldwin, A. R.; Washburn, R. M. J. Org. Chem. 1961, 26, 3549.
(b) Brahmi, M. M.; Monot, J.; Murr, M, D.; Curran, D. P.; Fensterbank, L.; Lacôte, E.; Malacria, M. J. Org. Chem. 2010, 75, 6983.
[10] (a) Brown, H. C.; Chandrasekharan, J. J. Am. Chem. Soc. 1984, 106, 1863.
(b) Kanth, J. V. B. Aldrichim. Acta 2002, 35, 57.
[11] Scheideman, M.; Shapland, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 10502.
[12] Beak, P. Acc. Chem. Res. 1992, 25, 215.
[13] Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
[14] (a) Shapland, P.; Vedejs, E. J. Org. Chem. 2006, 71, 6666.
(b) Karatjas, A. G.; Vedejs, E. J. Org. Chem. 2008, 73, 9508.
(c) Scheideman, M.; Wang, G.; Vedejs, E. J. Am. Chem. Soc. 2008, 130, 8669.
[15] Pronin, S. V.; Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 2012.
[16] Tabor, M. G.; Shenvi, R. A. Org. Lett. 2015, 17, 5776.
[17] Prokofjevs, A.; Boussonnière, A.; Li, L.; Bonin, H.; Lacôte, E.; Curran, D. P.; Vedejs, E. J. Am. Chem. Soc. 2012, 134, 12281.
[18] Pan, X.; Boussonnière, A.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 14433.
[19] Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, É.; Curran, D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2010, 49, 9166.
[20] Boussonnière, A.; Pan, X.; Geib, S. J.; Curran, D. P. Organometallics 2013, 32, 7445.
[21] Sewell, L. J.; Chaplin, A. B.; Weller, A. S. Dalton Trans. 2011, 40, 7499.
[22] Johnson, H. C.; Torry-Harris, R.; Ortega, L.; Theron, R.; McIndoe, J. S.; Weller, A. S. Catal. Sci. Technol. 2014, 4, 3486.
[23] Toure, M.; Chuzel, O.; Parrain, J. L. J. Am. Chem. Soc. 2012, 134, 17892.
[24] Wang, Q.; Motika, S. E.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 5418.
[25] Motika, S. E.; Wang, Q.; Akhmedov, N. G.; Wojtas, L.; Shi, X. Angew. Chem., Int. Ed. 2016, 55, 11582.
[26] Taniguchi, T.; Curran, D. P. Angew. Chem., Int. Ed. 2014, 53, 13150.
[27] Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.
[28] McFadden, T. R.; Fang, C.; Geib, S. J.; Merling, E.; Liu, P.; Curran D. P. J. Am. Chem. Soc. 2017, 139, 1726.
[29] De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679.
[30] Farrell, J. M.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 5214.
[31] Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133, 20056.
[32] Prokofjevs, A.; Jermaks, J.; Borovika, A.; Kampf, J. W.; Vedejs, E. Organometallics 2013, 32, 6701.
[33] Cazorla, C.; De Vries, T. S.; Vedejs, E. Org. Lett. 2013, 15, 984.
[34] (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
(b) Dorwald, F. Z. Metal Carbenes in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 1999.
(c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
(d) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(e) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580.
(f) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[35] Bedel, C.; Foucaud, A. Tetrahedron Lett. 1993, 34, 311.
[36] Monnier, L.; Delcros, J.-G.; Carboni, B. Tetrahedron 2000, 56, 6039.
[37] Imamoto, T.; Yamanoi, Y. Chem. Lett. 1996, 25, 705.
[38] Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
[39] Cheng, Q.-Q.; Xu, H.; Zhu, S.-F.; Zhou, Q.-L. Acta Chim. Sinica 2015, 73, 326(in Chinese). (程清卿, 徐唤, 朱守非, 周其林, 化学学报, 2015, 73, 326.)
[40] Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
[41] Allen, T. H.; Curran, D. P. J. Org. Chem. 2016, 81, 2094.
[42] Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268.
[43] Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2016, 55, 3785.
[44] Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 3784.
[45] For recent examples see:(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989.
(b) Rosenthal, A. J.; Devillard, M.; Miqueu, K.; Bouhadir, G.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 9198.
(c) Silva Valverde, M. F.; Schweyen, P.; Gisinger, D.; Bannenberg, T.; Freytag, M.; Kleeberg, C.; Tamm, M. Angew. Chem., Int. Ed. 2017, 56, 1135.
[46] (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
(b) Rablen, P. R. J. Am. Chem. Soc. 1997, 119, 8350.
(c) Walton, J. C. Angew. Chem., Int. Ed. 2009, 48, 1726.
(d) Lalevée, J.; Blanchard, N.; Chany, A.-C.; Tehfe, M.-A.; Allonas, X.; Fouassier, J.-P. J. Phys. Org. Chem. 2009, 22, 986.
[47] (a) Barton, D. H. R.; Jacob, M. Tetrahedron Lett. 1998, 39, 1331.
(b) Ueng, S.-H.; Brahmi, M. M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.
[48] (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.
(c) Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.
[49] (a) Telitel, S.; Schweizer, S.; Morlet-Savary, F.; Graff, B.; Tschamber, T.; Blanchard, N.; Fouassier, J. P.; Lelli, M.; Lacôte, E.; Lalevée, J. Macromolecules 2013, 46, 43.
(b) Lalevée, J.; Telitel, S.; Tehfe, M. A.; Fouassier, J. P.; Curran, D. P.; Lacôte, E. Angew. Chem., Int. Ed. 2012, 51, 5958.
[50] (a) Pan, X.; Vallet, A.-L.; Schweizer, S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib, S. J.; Curran, D. P.; Lalevée, J.; Lacôte, E. J. Am. Chem. Soc. 2013, 135, 10484.
(b) Telitel, S.; Vallet, A.-L.; Schweizer, S.; Delpech, B.; Blanchard, N.; Morlet-Savary, F.; Graff, B.; Curran, D. P.; Robert, M.; Lacôte, E.; Lalevée, J. J. Am. Chem. Soc. 2013, 135, 16938.
[51] Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.
[52] Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.
[53] Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
[54] Merling, E.; Lamm, V.; Geib, S. J.; Lacôte, E.; Curran, D. P. Org. Lett. 2012, 14, 2690.

文章导航

/