铱催化烯丙基酯的不对称烯丙基取代反应研究进展
收稿日期: 2017-04-19
修回日期: 2017-06-21
网络出版日期: 2017-08-11
基金资助
国家自然科学基金(Nos.21172081,21372090)、广东省自然科学基金重点(No.S2013020013091)和广州市科技计划(No.201510010054)资助项目.
Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions with Allylic Esters
Received date: 2017-04-19
Revised date: 2017-06-21
Online published: 2017-08-11
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21172081, 21372090), the Natural Science Foundation of Guangdong Province (No. S2013020013091) and the Science and Technology Plan Projects of Guangzhou City (No. 201510010054).
邓颖颍 , 杨文 , 杨新 , 杨定乔 . 铱催化烯丙基酯的不对称烯丙基取代反应研究进展[J]. 有机化学, 2017 , 37(12) : 3039 -3059 . DOI: 10.6023/cjoc201704034
Iridium-catalyzed asymmetric allylic substitution reaction is one of the most important methods for the synthesis of chiral compounds. The recent research progress in iridium-catalyzed asymmetric allylic substitution reactions of allylic ester and its derivatives is reviewed with focus on the influences of the iridium catalysts, the substrate structures of allylic ester and its derivatives, the type of nucleophiles, the effects of solvents and additives on asymmetric substitution reaction. Moreover, the possible mechanisms are also discussed in this review.
[1] (a) Liu, Z.-Q.; Du, H.-F. Org. Lett. 2010, 12, 3054.
(b) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716.
(c) Suetsugu, S.; Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
(d) Katcher, M. H.; Norrby, P. O.; Doyle, A. G. Organometallics 2014, 33, 2121.
[2] (a) Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet, V. D.; Jack, K.; Sun, Y.-K.; David, J. M.; Reamer, R. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5379.
(b) Litto, R. D.; Benessere, V.; Ruffo, F.; Moberg, C. Eur. J. Org. Chem. 2009, 1352.
[3] Moberg, C. Top Organomet. Chem. 2012, 38, 209.
[4] (a) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.
(b) Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417.
[5] (a) Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697.
(b) Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.
[6] Tan, Z.-Z.; Wan, X.-L.; Zang, Z.-H.; Qian, Q.; Deng, W.; Gong, H.-G. Chem. Commun. 2014, 50, 3827.
[7] (a) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.; Samas, B. M. Org. Lett. 2009, 11, 3140.
(b) Arnold, J. S.; Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380.
[8] (a) Yang, S.-C.; Feng, W.-H.; Gan, K.-H. Tetrahedron 2006, 62, 3752.
(b) Zhang, M.; Watanabe, K. J.; Tsukamoto, M.; Shibuya, R.; Morimoto, H.; Ohshima, T. Chem.-Eur. J. 2015, 21, 1.
[9] Guduguntla, S.; Hornillos, V.; Tessier, R.; Fannanaas-Mastral, M.; Feringa, B. L. Org. Lett. 2016, 18, 252.
[10] Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
[11] Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
[12] Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
[13] Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.
[14] Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
[15] Butt, N. A.; Zhang, W.-B. Chem. Soc. Rev. 2015, 44, 7929.
[16] Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
[17] Wu, Y.-J.; Long, Y.-H.; Yang, D.-Q. Chin. J. Org. Chem. 2009, 29, 1522(in Chinese). (吴钰娟, 龙玉华, 杨定乔, 有机化学, 2010, 29, 1522.)
[18] Giacomina, F.; Riat, D.; Alexakis, A. Org. Lett. 2010, 12, 1156.
[19] Stanley, L. M.; Bai, C.; Ueda, M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 8918.
[20] Zhao, Z.-L.; Gu, Q.; Wu, X.-Y.; You, S.-L. Chin. Chem. Lett. 2016, 27, 619.
[21] Bondzic, B. P.; Farwick, A.; Liebich, J.; Eilbracht, P. Org. Biomol. Chem. 2008, 6, 3723.
[22] Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.; You, S.-L. Chem. Commun. 2009, 6604.
[23] Zhang, H.-B.; Chen, J.-T.; Zhao, X.-M. Org. Biomol. Chem. 2016, 14, 7183.
[24] Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
[25] Xu, Q.-L.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 2275.
[26] Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D.-W. ACS Catal. 2016, 6, 3381.
[27] (a) Trost, B. M.; Jiang, C. H. Synthesis 2006, 369.
(b) Behenna, D. C.; Stoltz, B. M. Top Organomet. Chem. 2013, 44, 281.
[28] Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068.
[29] Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 377.
[30] Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626.
[31] Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 17298.
[32] Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.
[33] Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D.-W. J. Am. Chem. Soc. 2016, 138, 13103.
[34] (a) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(b) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
[35] (a) Yao, K.; Liu, D.-L.; Yuan, Q.-J.; Imamoto, T.; Liu, Y.-G.; Zhang, W.-B. Org. Lett. 2016, 18, 6296.
(b) Huo, X.-H.; Yang, G.-Q.; Liu, D.-L.; Liu, Y.-G.; Gridnev, I. D.; Zhang, W.-B. Angew. Chem., Int. Ed. 2014, 53, 6776.
[36] Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
[37] Wei, X.; Liu, D.-L.; An, Q.-J.; Zhang, W.-B. Org. Lett. 2015, 17, 5768.
[38] Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10, 1815.
[39] Zhou, C.-X.; Wu, Q.-F.; Zhou, Q.; Xu, Q.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 8169.
[40] Zhuo, C.-X.; Cheng, Q.; Liu, W.-B.; Zhao, Q.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 8475.
[41] Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455.
[42] Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579.
[43] Cheng, Q.; Wang, Y.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 3496.
[44] Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 15249.
[45] Chen, W.-Y.; Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 15825.
[46] Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8691.
[47] Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 13972.
[48] Chen, M.:Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 12172.
[49] Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 11651.
[50] Jiang, X.-Y.; Chen, W.-Y.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 5819.
[51] Alexakis, A.; Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.
[52] Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J. B.; Hajjaji, S. E.; Alexakis, A. Chem. Eur. J. 2009, 15, 1205.
[53] Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 7644.
[54] Liu, X.-J.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 4002.
[55] Breitler, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296.
[56] Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949.
[57] Pouy, M. J.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.
[58] Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 5546.
[59] Spiess, S.; Berthold, C.; Weihofen, R.; Helmchen, G. Org. Biomol. Chem. 2007, 5, 2357.
[60] Weix, D. J.; Markovic, D.; Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944.
[61] Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680.
[62] Ye, K.-Y.; Dai, L.-X.; You, S.-L. Org. Biomol. Chem. 2012, 10, 5932.
[63] Ye, K.-Y.; Dai, L.-X.; You, S.-L. Chem. Eur. J. 2014, 20, 3040.
[64] Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8971.
[65] Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 5183.
[66] Yang, Z.-P.; Wu, Q.-F.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 6986.
[67] Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873
[68] Yang, Z.-P.; Wu, Q.-F.; Shao, W.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 15899.
[69] Zhuo, C.-X.; Zhang, X.; You, S.-L. ACS Catal. 2016, 6, 5307.
[70] Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.
[71] Yang, Z.-P.; Zheng, C.; Huang, L.; Qian, C.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 1530.
[72] Miyabe, H.; Yoshida, K.; Reddy, V. K.; Takemoto, Y. J. Org. Chem. 2009, 74, 305.
[73] Gärtner, M.; Jäkel, M.; Achatz, M.; Sonnenschein, C.; Tverskoy, O.; Helmchen, G. Org. Lett. 2011, 13, 2810.
[74] Lee, J.-H.; Lee, S.-G. Chem. Sci. 2013, 4, 2922.
[75] Satyanarayana, G.; Helmchen, G. Eur. J. Org. Chem. 2014, 2242.
[76] Grange, R. L.; Clizbe, E. A.; Counsell, E. J.; Evans, A. P. Chem. Sci. 2015, 6, 777.
[77] Kimura, M.; Uozumi, Y. J. Org. Chem. 2007, 72, 707.
[78] He, H.; Ye, K.-Y.; Wu, Q.-F.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 1084.
[79] Qu, J.-P.; Roβberg, L.; Helmchen, G. J. Am. Chem. Soc. 2014, 136, 1272.
[80] Zhao, D.-P.; Martin, F. M.; Chang, M.-C.; Otten, E.; Feringa, B. L. Chem. Sci. 2014, 5, 4216.
[81] Zheng, S.-C.; Zhang, M.; Zhao. X.-M. Chem. Eur. J. 2014, 20, 1.
[82] Zhang, M.; Zheng, S.-C.; Zhao, X.-M. Chem. Commun. 2014, 50, 4455.
[83] Gärtner, M.; Mader, S.; Seehafer, K.; Helmchen, G. J. Am. Chem. Soc. 2011, 133, 2072.
[84] Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2010, 12, 800.
[85] Ueda, M.; Hartwing, J. F. Org. Lett. 2010, 12, 92.
[86] Liu, W.; Zhao, X.-M.; Zhang, H.-B.; Zhang, L.; Zhao, M.-Z. Chem. Eur. J. 2014, 20, 16873.
[87] Zheng, S.-C.; Gao, N.; Liu, W.; Liu, D.-G.; Zhao, X.-M.; Cohen, T. Org. Lett. 2010, 12, 4454.
[88] Zheng, S.-C.; Huang, W.-Q.; Gao, N.; Cui, R.-M.; Zhang, M.; Zhao, X.-M. Chem. Commum. 2011, 47, 6969.
[89] Huang, W.-Q.; Zheng, S.-C.; Tang, J.-L.; Zhao, X.-M. Org. Biomol. Chem. 2011, 9, 7897.
[90] Gao, N.; Zhao, X.-M. Eur. J. Org. Chem. 2013, 2708.
[91] Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.
[92] Zhang, Q.; Stockdale, D. P.; Mixdorf, J. C.; Topczewski, J. J.; Nguyen, H. M. J. Am. Chem. Soc. 2015, 137, 11912.
/
| 〈 |
|
〉 |