人工合成类DNA双股高分子的研究进展
收稿日期: 2017-04-30
修回日期: 2017-07-21
网络出版日期: 2017-08-11
基金资助
国家自然科学基金(No.21304032)、湖北省自然科学基金(Nos.2016CFB104,2015CFC772)和湖北省教育厅科学技术研究(No.Q20162705)资助项目.
Progress in the Synthesis of DNA-Like Double Strand Polymers
Received date: 2017-04-30
Revised date: 2017-07-21
Online published: 2017-08-11
Supported by
Project supported by the National Natural Science Foundation of China (No. 21304032), the Natural Science Foundation of Hubei Province (Nos. 2016CFB104, 2015CFC772), the Hubei Provincial Department of Education Science and Technology Research Projects (No. Q20162705).
朱磊 , 李博解 , 严沣 , 汪连生 . 人工合成类DNA双股高分子的研究进展[J]. 有机化学, 2017 , 37(11) : 2800 -2817 . DOI: 10.6023/cjoc201704052
Deoxyribonucleic acid (DNA) is the genetic material determining the makeup of all living cells and many viruses. DNA has a self-replicating feature which consists of two polynucleotide chains in the form of a double helix. The synthesis of DNA-like double strand polymers has attracted much attention over recent years due to the development of self-assembly chemistry and organic synthesis technology. The synthesis of double strand polymers divided by the interaction including non-covalent bonding and covalent bonding between linker and backbone is sumarized. Poly-norbornene which could be performed as effcient backbone is also described. A series of isotactic double strand polymeric ladderphanes have been successfully acheived based on such poly-norbornene backbone.
[1] Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.
[2] (a) Schuster, G. B. Acc. Chem. Res. 2000, 33, 253.
(b) Fink, H.-W.; Schonenberger, C. Nature 1999, 398, 407.
(c) Abi, A.; Ferapontova, E. E. J. Am. Chem. Soc. 2012, 134, 14499.
(d) Genereux, J. C.; Boal, A. K.; Barton, J. K. J. Am. Chem. Soc. 2010, 132, 891.
(e) Duprey, J.-L. H. A.; Carr, S. J.; Horswell, S. L.; Kowalski, J.; Tucker, J. H. R. J. Am. Chem. Soc. 2015, 138, 746.
[3] (a) Gill, R.; Zayats, M.; Willner, I. Angew. Chem., Int. Ed. 2008, 47, 7602.
(b) Cheng, C. S.; Rai, K.; Garber, M.; Hollinger, A.; Robbins, D.; Anderson, S.; Macbeth, A.; Tzou, A.; Carneiro, M. O.; Raychowdhury, R.; Russ, C.; Hacohen, N.; Gershenwald, J. E.; Lennon, N.; Nusbaum, C.; Chin, L.; Regev, A.; Amit, I. Nat. Commun. 2013, 4, 3672.
(c) Houlton, A.; Pike, A. R.; Galindo, M. A.; Horrocks, B. R. Chem. Commun. 2009, 14, 1797.
[4] (a) Kasumov, A. Y.; Kociak, M.; Gueron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchait, H. Science 2001, 291, 280.
(b) Hopkins, D. S.; Pekker, D.; Goldbart, P. M.; Bezryadin, A. Science 2005, 308, 1762.
(c) Watson, S. M. D.; Pike, A. R.; Pate, J.; Houlton, A.; Horrocks, B. R. Nanoscale 2014, 6, 4027.
[5] (a) Joyce, G. F. Nature 1989, 338, 217.
(b) Bochman, M. L.; Schwacha, A. Nature 2015, 524, 186.
(c) Dewar, J. M.; Budzowska, M.; Walter, J. C. Nature 2015, 525, 345.
(d) Creager, R. L.; Li, Y.-L.; Macalpine, D. M. Cell 2015, 161, 418.
(e) Bell, S. P. Science 2014, 346, 418.
[6] Orgel, L. E. Nature 1992, 358, 203.
[7] (a) Von Kiedrowski, G. Angew. Chem., Int. Ed. 1986, 25, 932.
(b) Brandsch, R.; Luther, A.; Von Kiedrowski, G. Nature 1998, 396, 245.
(c) Bag, B. G.; Von Kiedrowski, G. Pure Appl. Chem. 1996, 68, 214.
[8] Peins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.
[9] (a) Tjivikua, T.; Ballester, P.; Rebek, J. Jr. J. Am. Chem. Soc. 1990, 112, 1249.
(b) Feng, Q.; Park, P. K.; Rebek, J., Jr. Science 1992, 256, 1179.
(c) Conn, M. M.; Winter, E. A.; Rebek, J. Jr. Acc. Chem. Res. 1994, 27, 198.
[10] Würthner, F.; Rebek, J. Angew. Chem., Int. Ed. 1995, 34, 446.
[11] Terfort, A.; Von Kiedrowski, G. Angew. Chem., Int. Ed. 1992, 31, 654.
[12] Wang, B.; Sutherland, I. O. Chem. Commum. 1997, 1495.
[13] Harada, A.; Li, J.; Kamachi, M. Nature 1994, 370, 126.
[14] (a) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem.-Eur. J. 2001, 7, 2810.
(b) Berl, V.; Huc, I.; Khoruy, R. G.; Lehn, J.-M. Chem.-Eur. J. 2001, 7, 2789.
[15] Sugimoto, T.; Suzuki, T.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2007, 129, 270.
[16] (a) Ikeda, M.; Tanaka, Y.; Hasegawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 6806.
(b) Maeda, T.; Furusho, Y.; Sakurai, S.-I.; Kumaki, J.; Okoshi, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 7938.
(c) Makiguchi, W.; Kobayashi, S.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2013, 52, 5275.
[17] Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. 1990, 29, 914.
[18] Mohr, F.; Jennings, M. C.; Puddephatt, R. J. Angew. Chem., Int. Ed. 2004, 43, 969.
[19] Schultheiss, N.; Powell, D. R.; Bosch, E. Inorg. Chem. 2003, 42, 8886.
[20] Reger, D. L.; Semeniuc, R. F.; Rassolov, V.; Smith, M. D. Inorg. Chem. 2004, 43, 537.
[21] Nagahama, S.; Matsumoto, A. J. Am. Chem. Soc. 2001, 123, 12176.
[22] Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.; Anderson, H. L. J. Am. Chem. Soc. 2002, 124, 9712.
[23] Tang, H.; Sun, J.; Jiang, J.; Zhou, X.; Hu, T.; Xie, P.; Zhang, R. J. Am. Chem. Soc. 2002, 124, 10482.
[24] Anderson, A. W.; Merckling, N. G. US 2721189, 1955[Chem. Abstr. 1956, 50, 3008i].
[25] (a) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 426.
(b) Natta, G. J. Polym. Sci. 1955, 16, 143.
[26] Truett, W. L.; Johnson, D. R.; Robinson, I. M.; Montague, B. A. J. Am. Chem. Soc. 1960, 82, 2337.
[27] (a) Ivin, K. J.; Laverty, D. T.; Rooney, J. J. Makromol. Chem. 1977, 178, 1545.
(b) Ivin, K. J.; Laverty, D. T.; Rooney, J. J.; Watt, P. Recl. Trav. Chim. Pays-Bas 1977, 96, 54.
(c) Ivin, K. J.; Lapienis, G.; Rooney, J. J. Chem. Commun. 1979, 1068.
(d) Ivin, K. J.; Lapienis, G.; Rooney, J. J. Polymer 1980, 21, 436.
[28] Beaven, G. H.; Johnston, E. A.; Miller, R. G.; Willis, H. A. Molecular Spectroscopy, Heywood & Co., Ltd., London, 1961.
[29] (a) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158.
(b) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; Dimare, M.; Oregan, M. J. Am. Chem. Soc. 1990, 112, 3875.
(c) Schrock, R. R.; Hoveyda, H. Angew. Chem., Int. Ed. 2003, 42, 4592.
[30] (a) Kanaoka, S.; Grubbs, R. H. Macromolecules 1995, 28, 4707.
(b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
(c) Schwab, P.; Grubbs. R. H. J. Am. Chem. Soc. 1996, 118, 100.
(d) Weck, M.; Schwab, P.; Grubbs, R. H. Macromolecules 1996, 29, 1789.
(e) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
[31] (a) Grubbs, R. H.; Novak, B. M.; McGrath, D. M.; Benedicto, A.; France, M.; Nguyen, S. T. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1992, 203, 20.
(b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
(c) Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 3974.
[32] (a) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 1998, 37, 2490.
(b) Ackerman, L.; Fürstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40, 4787.
(c) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahydron Lett. 1999, 40, 2247.
[33] O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 3414.
[34] Delaude, L.; Demonceau, A.; Noels, A. F. Macromolecules 2003, 36, 1446.
[35] (a) Maughon, B. R.; Weck, M.; Mohr, B.; Grubbs, R. H. Macromolecules 1997, 30, 257.
(b) Weck, M.; Mohr, B.; Maughon, B. R.; Grubbs, R. H. Macromolecules 1997, 30, 6430.
[36] (a) Sattigeri, J. A.; Shiau, C.-W.; Yeh, F. F.; Jin, B.-Y.; Hsu, C. C.; Luh, T.-Y. J. Am. Chem. Soc. 1999, 121, 1607.
(b) Shiau, C.-W.; Sattigeri, J. A.; Shen, C. K.-F.; Luh, T.-Y. Or-ganometallics 1999, 572, 291.
(c) Hsu, C. C.; Hung, T.-H.; Liu, S.; Yeh, F.-F.; Jin. B.-Y.; Sattigeri, J. A.; Shiau, C.-W.; Luh, T.-Y. Chem. Phys. Lett. 1999, 311, 355.
(d) Churikov, V. M.; Hung, M.-F.; Hsu, C. C.; Shiau, C.-W.; Luh, T.-Y. Chem. Phys. Lett. 2000, 332, 19.
(e) Luh, T.-Y.; Chen, R.-M.; Hung, T.-Y.; Basu, S.; Shiau, C.-W.; Lin, W.-Y.; Jin, B.-Y.; Hsu, C. C. Pure Appl. Chem. 2001, 73, 243.
(f) Xiao, C.-W. M.S. Thesis, National Taiwan University, Taipei, 1999(in Chinese). (萧崇玮, 硕士论文, 台湾大学, 台北, 1999.)
[37] Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai, H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I.-W. P.; Chen, C.-H.; Luh, T.-Y. Chem.-Eur. J. 2006, 12, 324.
[38] Wang, H.-W.; Liu, Z.-C.; Chen, C.-H.; Lim, T.-S.; Fang, WS.; Chao, C.-G.; Yu, J.-Y.; Lee, S.-L.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Chem.-Eur. J. 2009, 15, 5719.
[39] Lin, W.-Y.; Wang, H.-W.; Liu, Z.-C.; Xu, J.; Chen, C.-W.; Yang, Y.-C.; Huang, S.-L.; Yang, H.-C.; Luh, T.-Y. Chem. Asian J. 2007, 2, 764.
[40] Zhu, L.; Lin, N.-T.; Xie, Z.-Y.; Lee, S.-L.; Huang, S.-L.; Yang, J.-H.; Lee, Y.-D.; Chen, C.-H.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2013, 46, 656.
[41] Yang, H.-C.; Lin, S.-Y.; Yang, H.-C.; Lin, C.-L.; Tsai, L.; Huang, S.-L.; Chen, I.-W. P.; Chen, C.-H.; Jin, B.-Y.; Luh, T.-Y. Angew. Chem., Int. Ed. 2006, 45, 726.
[42] Brock, C. P.; Fu, Y. Acta Crystallogr., Sect B:Struct. Sci. 1997, 53, 928.
[43] Cai, L. M.S. Thesis, National Taiwan University, Taipei, 2002(in Chinese). (蔡纶, 硕士论文, 台湾大学, 台北, 2002.)
[44] Yang H.-J. Ph.D. Dissertation, National Taiwan University, Taipei, 2006(in Chinese). (杨慧君, 博士论文, 国立台湾大学, 台北, 2006.)
[45] Lin, N.-T.; Lin, S.-Y.; Lee, S.-L.; Chen, C.-H.; Hsu, C.-H.; Hwang, L.-P.; Xie, Z.-Y.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Angew. Chem., Int. Ed. 2007, 46, 4481.
[46] Lee, S.-L.; Lin, N.-T.; Liao, W.-C.; Chen, C.-H.; Yang, H.-C.; Luh, T.-Y. Chem. Eur. J. 2009, 15, 11594.
[47] (a) Chou, C.-M.; Lee, S.-L.; Chen, C.-H.; Biju, A. T.; Wang, H.-W.; Wu, Y.-L.; Zhang, G.-F.; Yang, K.-W.; Lim, T.-S.; Huang, M.-J.; Tsai, P.-Y.; Lin, K.-C.; Huang, S.-L.; Chen, C.-H.; Luh, T.-Y. J. Am. Chem. Soc. 2009, 131, 12579.
(b) Chen, C.-W.; Chang, H.-Y.; Lee, S.-L.; Hsu, I.-J.; Lee, J.-J.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2010, 43, 8741.
(c) Yang, K.-W.; Xu, J.; Chen, C.-H.; Huang, H.-H.; Yu, J.-Y.; Lim, T.-S.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2010, 43, 5188.
(d) Huang, H.-H.; Chao, C.-G.; Lee, S.-L.; Wu, H.-J.; Chen, C.-H.; Luh, T.-Y. Org. Biomol. Chem. 2012, 10, 5948.
(e) Yeh, N.-H.; Chen, C.-W.; Lee, S.-L.; Wu, H.-J.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2012, 45, 2662.
[48] For a review, see:Luh, T.-Y. Acc. Chem. Res. 2013, 46, 378.
[49] For reviews, see:(a) Cordova, A.; Rios, R. Angew. Chem., Int. Ed. 2009, 48, 8827.
(b) Schrock, R. R. Dalton Trans. 2011, 40, 7484.
(c) Gottumukkala, A. L.; Madduri, A. V. R.; Minnaard, A. J. ChemCatChem 2012, 4, 462.
(d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592.
[50] (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
(b) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.
(c) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780.
[51] (a) Ibrahem, I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844.
(b) Banchet-Cadeddu, A.; Henon, E.; Dauchez, M.; Renault, J.-H.; Monneaux, F.; Haudrechy, A. Org. Biomol. Chem. 2011, 9, 3080.
[52] (a) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456, 933.
(b) Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943.
(c) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 479, 88.
[53] (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7962.
(b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules 2010, 43, 7515.
(c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. 2011, 133, 1784.
[54] Zhu, L.; Flook, M. M.; Lee, S.-L.; Chan, L.-W.; Huang, S.-L.; Chiu, C.-W.; Chen, C.-H.; Schrock, R. R.; Luh, T.-Y. Macromolecules 2012, 45, 8166.
/
〈 |
|
〉 |