研究论文

钯催化取代吲哚与苯丙酮类化合物的直接偶联构筑咔唑衍生物

  • 周全龙 ,
  • 朱昌垒 ,
  • 吴戈 ,
  • 张远飞 ,
  • 张敏 ,
  • 苏伟平
展开
  • a 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002;
    b 福建师范大学材料科学与工程学院 福州 350007

收稿日期: 2017-05-08

  修回日期: 2017-07-06

  网络出版日期: 2017-08-11

基金资助

国家自然科学基金(Nos.21431008,21332001,21602221,u1505242)资助项目.

Construction of Carbazoles by Palladium-Catalyzed Direct Cross-Coupling of Indoles with in situ Generated Aryl Vinyl Ketones

  • Zhou Quanlong ,
  • Zhu Changlei ,
  • Wu Ge ,
  • Zhang Yuanfei ,
  • Zhang Min ,
  • Su Weiping
Expand
  • a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002;
    b College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007

Received date: 2017-05-08

  Revised date: 2017-07-06

  Online published: 2017-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21431008,21332001,21602221,u1505242).

摘要

报道了一种过渡金属钯催化的由取代吲哚与苯丙酮类化合物直接脱氢偶联构筑咔唑衍生物的新方法.反应经历饱和苯丙酮类化合物的原位脱氢形成烯烃中间体,该中间体直接与吲哚发生反应脱氢环化,省略了底物的预活化,为咔唑衍生物的合成提供原子和步骤经济的合成路径.

本文引用格式

周全龙 , 朱昌垒 , 吴戈 , 张远飞 , 张敏 , 苏伟平 . 钯催化取代吲哚与苯丙酮类化合物的直接偶联构筑咔唑衍生物[J]. 有机化学, 2017 , 37(10) : 2655 -2662 . DOI: 10.6023/cjoc201705014

Abstract

The synthesis of carbazoles via Pd-catalyzed direct cross-coupling of indoles with in situ generated aryl vinyl ketones by using statured ketones as the olefins source is described. This protocol obviates the need for additional preparation steps of aryl vinyl ketones and therefore opens up a new door to synthesis of carbazoles in an atom-and step-economical fashion.

参考文献

[1] (a) Zhang, F.-F.; Gan, L.-L.; Zhou, C.-H. Bioorg. Med. Chem. Lett. 2010, 20, 1881.
(b) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2003, 20, 1.
(c) Deslandes, S.; Chassaing, S.; Delfourne, E. Mar. Drugs 2009, 7, 754.
(d) Maneerat, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Phakhodee, W.; Laphookhieo, S. J. Nat. Prod. 2012, 75, 741.
[2] (a) Roy, J.; Jana, A. K.; Mal, D. Tetrahedron 2012, 68, 6099.
(b) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
(c) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.
[3] (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[4] Zhao, J.; Larock, R. C. J. Org. Chem. 2006, 71, 5340.
[5] (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
(b) Jordan-Hore, J. A.; Johansson, C. C.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184.
(c) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996.
(d) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 2892.
[6] (a) Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7481.
(b) Jia, J.; Shi, J.; Zhou, J.; Liu, X.; Song, Y.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 2925.
[7] (a) Ozaki, K.; Zhang, H.; Ito, H.; Lei, A.; Itami, K. Chem. Sci. 2013, 4, 3416.
(b) Verma, A. K.; Danodia, A. K.; Saunthwal, R. K.; Patel, M.; Choudhary, D. Org. Lett. 2015, 17, 3658.
(c) Laha, J. K.; Dayal, N. Org. Lett 2015, 17, 4742.
(d) Chen, S.; Li, Y.; Ni, P.; Huang, H.; Deng, G. J. Org. Lett 2016.
[8] Grimster, N. P.; Gauntlett, C.; Godfrey, C. R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125.
[9] Guo, T.; Jiang, Q.; Huang, F.; Chen, J.; Yu, Z. Org. Chem. Front. 2014, 1, 707.
[10] (a) Muzart, J. Eur. J. Org. Chem. 2010, 3779.
(b) Newhouse, T.; Turlik, A.; Chen, Y. Synlett 2016, 27, 331.
[11] (a) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem., Int. Ed. 2002, 41, 996.
(b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993.
(c) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245.
(d) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251.
(e) Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596.
[12] (a) Bhattacharya, A.; DiMichele, L. M.; Dolling, U. H.; Douglas, A. W.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 3318.
(b) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
[13] (a) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566.
(b) Gao, W. M.; He, Z. Q.; Qian, Y.; Zhao, J.; Huang, Y. Chem. Sci. 2012, 3, 883.
(c) Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887.
(d) Diao, T.; Pun, D.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8205.
(e) Bigi, M. A.; White, M. C. J. Am. Chem. Soc. 2013, 135, 7831.
[14] (a) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
(b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017.
[15] (a) Zhang, M.; Zhou, J.; Kan, J.; Wang, M.; Su, W.; Hong, M. Chem. Commun. 2010, 46, 5455.
(b) Zhou, J.; Wu, G.; Zhang, M.; Jie, X.; Su, W. Chem.-Eur. J. 2012, 18, 8032.
(c) Zhang, M.; Hu, P.; Zhou, J.; Wu, G.; Huang, S.; Su, W. Org. Lett. 2013, 15, 1718.
(d) Shang, Y.; Jie, X.; Zhou, J.; Hu, P.; Huang, S.; Su, W. Angew. Chem. Int. Ed. 2013, 52, 1299.
[16] Jie, X.; Shang, Y.; Zhang, X.; Su, W. J. Am. Chem. Soc. 2016, 138, 5623.
[17] Xiao, B.; Li, Y. M.; Liu, Z. J.; Yang, H. Y.; Fu, Y. Chem. Commun. 2012, 48, 4854.
[18] Klare, H. F.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312.
[19] Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Org. Lett. 2010, 12, 5740.
[20] Qi, T.; Qiu, W.; Liu, Y.; Zhang, H.; Gao, X.; Liu, Y.; Lu, K.; Du, C.; Yu, G.; Zhu, D. J. Org. Chem. 2008, 73, 4638.

文章导航

/