一种含吡啶配体氮杂环卡宾钯络合物(NHC)PdCl2(Py)的合成及其高效催化偶联反应
收稿日期: 2017-05-17
修回日期: 2017-07-13
网络出版日期: 2017-08-11
基金资助
国家自然科学基金(No.21402067)资助项目.
Synthesis of a Pd-Pyridine N-Heterocyclic Carbene Complex (NHC)-PdCl2(Py) and Its Efficient Application in Coupling Reaction
Received date: 2017-05-17
Revised date: 2017-07-13
Online published: 2017-08-11
Supported by
Project supported by the National Natural Science Foundation of China (No. 21402067).
通过两步反应合成了一种卡宾配合物(NHC) PdCl2(Py),该配合物在有氧条件下能够高效地催化Suzuki偶联反应、Heck偶联反应和Sonogashira偶联反应.对于Suzuki偶联和Sonogashira偶联,仅使用0.1 mol%催化量的催化剂就能取得较好的收率.而对于不活泼的Heck偶联,使用1 mol%催化量的催化剂也能得到较好的产率.
关键词: 卡宾; Suzuki偶联反应; Heck偶联反应; Sonogashira偶联反应
袁航 , 陈惠莲 , 罗治斌 , 高玉华 , 陆鸿飞 . 一种含吡啶配体氮杂环卡宾钯络合物(NHC)PdCl2(Py)的合成及其高效催化偶联反应[J]. 有机化学, 2017 , 37(11) : 2948 -2955 . DOI: 10.6023/cjoc201705027
A Pd-pyridine N-heterocyclic carbene complex (NHC)PdCl2(Py) has been synthesized through two steps and successfully applied as an effective catalyst for the Suzuki coupling reaction, Heck coupling reaction and Sonogashira coupling reaction. The catalyst demonstrates excellent catalytic activity in Suzuki coupling reaction and Sonogashira coupling reaction with a catalyst loading of 0.1 mol% and 1 mol% in Heck coupling reaction.
Key words: carbene; suzuki coupling; Heck coupling; Sonogashira coupling
[1] Schuster, O.; Yang, L. Y.; Raubenheimer, G. H.; Albrecht, M. Chem. Rev. 2009, 109, 3445.
[2] (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2009, 47, 3122.
(b) Brien, C. J.; E. Kantchev, A. B.; Hadei, C. V.; Chass, G. A.;.Lough, A.; Hopkinson, A. C.; Organ, M, G. Chem. Eur. J. 2006, 12, 4743.
(c) Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, A. B.; C. Brien, J.; Valente, V. Chem. Eur. J. 2006, 12, 4749.
(d) Calimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. Angew. Chem., Int. Ed. 2010, 49, 2014.
(e) Calimsiz, S.; Organ, M. G. Chem. Commun. 2011, 47, 5181.
(f) Hoi, K. W.; Froese, R. D.; Hopkinson, A. C.; Organ, M. G. Chem. Eur. J. 2012, 18, 145.
[3] (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(b) Chartoire, A; Frogneux, X.; Boreux, A.; Slawin, A. M. Z.; Nolan, S. P. Organometallics 2012, 31, 6947.
(c) Farmer, J. L.; Hunter, H. N.; Organ, M. G. J. Am. Chem. Soc. 2012, 134, 17470.
(d) Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. J. Org. Chem. 2008, 73, 7380.
(e) Colombel, V.; Rombouts, F.; Oehlrich, D.; Molander, G. A. J. Org. Chem. 2012, 77, 2966.
[4] (a) Kaufhold, O.; Hahn, F. E. Angew. Chem., Int. Ed. 2008, 47, 4507.
(b) Han, Y.; Huynh, H. V.; Tan, G. K. Organometallics 2007, 26, 6447.
(c) Liao, C. Y.; Chan, K. T.; Zeng, J. Y.; Hu, C. H.; Tu, C. Y.; Lee, H. M. Organometallics 2007, 26, 1692.
(d) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28, 4335.
[5] (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
(b) Valente, C.; Ho, K. O.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
[6] (a) Lin, Y. C.; Hsueh, H. H.; Kanne, S.; Chang, L. K.; Liu, F. C.; Lee, G. H.; Peng, S. M. Organometallics 2013, 32, 3859.
(b) Tamami, B.; Farjadian, F.; Ghasemi, S.; Allahyari, H. New J. Chem. 2013, 37, 2011.
(c) Faraji, L.; Jadidi, K.; Notash, B. Tetrahedron Lett. 2014, 55, 346.
(d) Wilczewska, A. Z.; Misztalewsk, I. Organometallics 2014, 33, 5203.
(e) Taira, T.; Yanagimoto, T.; Sakai, K.; Sakai, H.; Endo, A.; Imura, T. Tetrahedron 2016, 72, 4117.
[7] (a) Zhong, R.; Pöthig, A.; Feng, Y. K.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem. 2014, 16, 4955.
(b) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
(c) Xu, S. J.; Song, K. P.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272.
(d) Xu, C.; Li, H. M.; Xiao, Z. Q.; Wang, Z. Q.; Tang, S. F.; Ji, B. M.; Hao, X. Q.; Song, M. P. Dalton Trans. 2014, 43, 10235.
(e) Rajabi, F.; Thiel, W. R. Adv. Synth. Catal. 2014, 356, 1873.
[8] (a) Gallop, C. W. D.; Chen, M. T.; Navarro, O. Org. Lett. 2014, 16, 3724.
(b) Boubakri, L.; Yasar, S.; Dorcet, V.; Roisnel, T.; Bruneau, C.; Hamdib, N.; Ozdemira, I. New J. Chem. 2017, 41, 5105.
(c) Bernhammer, J. C.; Chong, N. X.; Jothibasu, R.; Zhou, B. B; Huynh, H. V. Organometallics 2014, 33, 3607.
(d) John, A.; Modak, S.; Madasu, M.; Katari, M.; Ghosh, P. Polyhedron 2013, 64, 20.
[9] Lu, H. F.; Wang, L.; Yang, F. F.; Wu, R. Z.; Shen, W. RSC Adv. 2014, 4, 30447.
[10] Tang, Y.; Yang, F. F.; Nie, S. P.; Wang, L.; Luo, Z. B.; Lu, H. F. Chin. J. Org. Chem. 2015, 35, 705(in Chinese). (唐演, 杨飞飞, 聂士鹏, 王林, 罗治斌, 陆鸿飞, 有机化学, 2015, 35, 705.)
[11] Rajabi, F.; Thiel, W. R. Adv. Synth. Catal. 2014, 356, 1873.
[12] Zhou, W. J.; Wang, K. H.; Wang, J. X.; Huang, D. F. Eur. J. Org. Chem. 2010, 416.
[13] Liu, W.; Tian, F.; Wang, X. L.; Yu, H.; Bi, Y. L. Chem. Commun. 2013, 49, 2983.
[14] Long, R. R.; Yan, X. F.; Wu, Z. Q.; Li, Z. K.; Xiang, H. F.; Zhou, X. G. Org. Biomol. Chem. 2015, 13, 3571.
[15] Edsall, R. J.; Harris, H. A.; Manas, E. S.; Mewshaw, R. E. Bioorg. Med. Chem. 2003, 11, 3457.
[16] So, C. M.; Chow, W. K.; Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Chem. Eur. J. 2010, 16, 7996.
[17] Perretti, M. D.; Monzon, D. M.; Crisostomo, F. P.; Martn, V. S.; Carrillo, R. Chem. Commun. 2016, 52, 9036.
[18] Duan, S. T.; Xu, Y. S.; Zhang, X. Y.; Fan, Y. S. Chem. Commun. 2016, 52, 10529.
[19] Zhao, F.; Luo, J. Y.; Tan, Q.; Liao, Y. F.; Peng, S. M.; Deng, G. J. Adv. Synth. Catal. 2012, 354, 1914.
[20] Zhang, Y. G.; Liu, X. L.; He, Y. Z.; Li, X. M.; Kang, H. J.; Tian, S. K. Chem. Eur. J. 2014, 20, 2765.
[21] Yu, L.; Huang, Y. P.; Wei, Z.; Ding, Y. H.; Su, C. L.; Xu, Q. J. Org. Chem. 2015, 80, 8677.
[22] Hong, F. J.; Low, Y. Y.; Chong, K. W.; Thomas, N. F.; Kam, T. S. J. Org. Chem. 2014, 79, 4528.
[23] Sagadevan, A.; Hwanga, K. C. Adv. Synth. Catal. 2012, 354, 3421.
[24] Zhao, D. B.; Gao, C.; Su, X. Y.; He, Y. Q.; You, J. S.; Xue, Y. Chem. Commun. 2010, 46, 9049.
[25] Kim, T.; Jeong, K. H.; Kim, Y.; Noh, T.; Choi, J.; Ham, J. Eur. J. Org. Chem. 2017, 2425.
[26] Jadhav, S. N.; Kumbhar, A. S.; Mali, S. S.; Hong, C. K.; Salunkhe, R. S. New J. Chem. 2015, 39, 2333.
/
〈 |
|
〉 |