研究论文

固氮螺菌重复三糖片段的化学合成及其对植物生长的影响

  • 许一仁 ,
  • 张建军 ,
  • 董燕红 ,
  • 谭伟明
展开
  • a 中国农业大学理学院 北京 100193;
    b 中国农业大学农学院 北京 100193

收稿日期: 2017-06-27

  修回日期: 2017-07-28

  网络出版日期: 2017-08-16

基金资助

国家科技支撑计划(No.2015BAK45B01)及国家自然科学基金(No.21172257)资助项目.

Synthesis of the Trisaccharide Repeating Unit from Azospirillum brasilense Type Strain Sp7 and Its Effect on Plant Growth

  • Xu Yiren ,
  • Zhang Jianjun ,
  • Dong Yanhong ,
  • Tan Weiming
Expand
  • a School of Science, China Agricultural University, Beijing 100193;
    b College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193

Received date: 2017-06-27

  Revised date: 2017-07-28

  Online published: 2017-08-16

Supported by

Project supported by the National Science and Technology Pillar Program of China (No. 2015BAK45B01) and the National Natural Science Foundation of China (No. 21172257).

摘要

D-木糖、L-岩藻糖和D-甘露糖为起始原料,分别合成4-羟基木糖受体、岩藻糖乙基硫苷供体以及D-鼠李糖三氯乙酰亚胺酯供体,而后通过[2+1]偶联策略,得到结构为α-D-鼠李糖-(1→3)-α-L-岩藻糖-(1→4)-β-D-木糖的三糖对甲氧基苯基糖苷,该三糖为固氮螺菌(Azospirillum brasilense type strain Sp7)表面脂多糖的重复单元结构.在关键的α-D-鼠李糖供体与双糖受体糖苷化反应中,通过低温条件下双糖受体中岩藻糖3、4位两个羟基的选择性糖苷化反应,实现区域、立体选择性构建全保护的三糖.该合成路线步骤简洁,以L-岩藻糖为原料计算,目标三糖总收率达到10%,适宜于目标产物的大量制备.初步植物生长调节活性研究表明,采用砂培发芽床的生物测定试验表明在100 mg/L浓度下,所合成的目标三糖浸种处理能促进10℃低温条件下玉米种子的出苗和幼苗生长,对出苗率、株高和叶面积分别提高11.0%、13.1%和87.8%,初步判断该三糖具有一定的植物生长调节活性.

本文引用格式

许一仁 , 张建军 , 董燕红 , 谭伟明 . 固氮螺菌重复三糖片段的化学合成及其对植物生长的影响[J]. 有机化学, 2017 , 37(11) : 2929 -2939 . DOI: 10.6023/cjoc201706036

Abstract

A natural trisaccharide α-D-rhamnopyanosyl-(1→3)-α-L-fucopyranosyl-(1→4)-β-D-xylopyranoside was synthesized from xylose glycoside donor, fucose glycoside donor and rhamnopyanosyl glycoside donor using α-D-xylopyranoside, β-L-fucopyranoside and α-D-rhamnopyranoside as the raw material respectively. This trisaccharide is a repeating-structure of the cell wall of the Azospirillum brasilense type strain Sp7. In the critical glycosylation reaction between rhamnopyanosyl glycoside donor and disaccharide receptor, full protected trisaccharide was regioselectivity builded. Streamlined the synthesis steps and the total yield of trisaccharide is 10% base on β-L-fucopyranoside. This route is suitable for mass preparation of target products. Preliminary determination of plant growth regulating activity of germination bed in sand culture showed that at 100 mg/L concen-tration, the trisaccharide raised the rate of emergence, the plant height and the leaf area by 11.0%, 13.1% and 87.8%, respectively. It was preliminarily concluded that this trisaccharide had certain plant growth regulating activity.

参考文献

[1] Truchet, G.; Roche, P.; Lerouge, P.; Vasse, J.; Camut, S.; De Billy, F.; Prome, J. C.; Denarie, J. Nature 1991, 86, 670.
[2] Long, S. R. Plant Cell 1996, 8, 1885.
[3] Fedonenko, Y. P.; Egorenkova, I. V.; Konnova, S. A.; Ignatov, V. V. Microbiology 2001, 70, 329.
[4] Jofre, E.; Lagares, A.; Mori, G. FEMS Microbiol. Lett. 2004, 231, 267.
[5] Wang, Y.; Hollingsworth, R. I. Carbohydr. Res. 1994, 260, 305.
[6] Russa, R.; Bruneteau, M.; Shashkov, A. S.; Urbanik-Sypniewska, T.; Mayer, H. Arch. Microbiol. 1996, 165, 26.
[7] Learemans, T.; Vanderleyden, J. World J. Microbiol. Biotechnol. 1998, 14, 787.
[8] Forsberg, L. S.; Carlson, R. W. J. Biol. Chem. 1998, 273, 2747.
[9] Zabotina, O. A.; Gurjanov, O. P.; Ibragimova, N. N.; Ayupova, D. A.; Lozovaya, V. V Plant Sci. 1998, 135, 195.
[10] Zhang, J.; Kong, F. J. Carbohydr. Chem.2002, 21, 579.
[11] Liu, H.; Cheng, S.; Liu, J.; Du, Y.; Bai, Z. J. Agric. Food Chem. 2008, 56, 5634.
[12] Tarrand, J. J.; Krieg, N. R.; Dobereiner, J. Can. J. Microbiol. 1978, 24, 967.
[13] Michiels, K.; Croes, C.; Vanderleyden, J. J. Gen. Microbiol. 1991, 137, 2241.
[14] Lerner, A.; Castro-Sowinski, S.; Valverde, A.; Lerner, H.; Dror, R.; Okon, Y.; Burdman, S. Microbiol-Sgm. 2009, 155, 4058.
[15] Van Puyvelde, S; Cloots, L; Engelen; K. Microb. Ecol. 2011, 61, 723.
[16] Zong, G.; Feng, Y.; Liang, X.; Chen, L.; Zhang, J.; Wang, D. Carbohydr. Res. 2010, 345, 2067.
[17] Sigida, E. N.; Fedonenko, Y. P.; Shashkov, A. S.; Zdorovenko, E. L.; Konnova, S. A.; Ignatov, V. V.; Knirel, Y. A. Carbohydr. Res. 2013, 380, 76.
[18] Zunk, M.; Kiefel, M. J. Tetrahedron Lett. 2011, 52, 1296.
[19] (a) Jiang, R.; Zong, G.; Liang, X.; Jin, S.; Zhang, J.; Wang, D. Molecules 2014, 19, 6683.
[20] Wang, J. Y.; Jiang, R.; Liang, X. M.; Wang, D. Q.; Zhang, J. J. Chin. J. Org. Chem. 2017, 37, 375(in Chinese). (王家尧, 姜锐, 梁晓梅, 王道全, 张建军, 有机化学, 2007, 37, 375.)
[21] Jiang, R.; Liang, X. M.; Sun, J.; Zhang, J. J.; Wang, D. Q. Chin. J. Org. Chem. 2014, 34, 926(in Chinese). (姜锐, 梁晓梅, 孙晋, 张建军, 王道全, 有机化学, 2014, 34, 926.)
[22] Zong, G.; Yu, N.; Xu, Y.; Zhang, J.; Wang, D.; Liang, X. Synthesis-Stuttgart 2010, 10, 1666.
[23] Ishiwata, A.; Sakurai, A.; Nishimiya, Y.; Tsuda, S.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 19524.
[24] Helm, R. F.; Ralph, J.; Anderson, L. J. Org. Chem. 1991, 56, 7015.
[25] Zong, G. H.; Yan, S. Q.; Mei, X.; Liang, J.; Zhang, J.; Quan, D.; Fan, W.; Kong, Z. Chin. Chem. Lett. 2009, 20, 127.
[26] Morishima, N.; Koto, S.; Kusuhara, C.; Zen, S. Bull. Chem. Soc. Jpn. 1982, 55, 631.
[27] Mandal, P. K.; Dhara, D.; Misra, A. K. Synthesis-Stuttgart 2014, 46, 1947.
[28] Patro, B.; Schmidt, R. R. Synthesis-Stuttgart 1998, 12, 1731.

文章导航

/