综述与进展

螺异噁唑啉类化合物的合成及生物活性的研究进展

展开
  • 新疆大学化学与化工学院 乌鲁木齐 830046

收稿日期: 2017-08-08

  修回日期: 2017-09-12

  网络出版日期: 2017-09-19

基金资助

国家自然科学基金(Nos.21462043,21062019)资助项目.

Progress in Synthesis and Bioactivity of Spiroisoxazoline Compounds

Expand
  • College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046

Received date: 2017-08-08

  Revised date: 2017-09-12

  Online published: 2017-09-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21462043, 21062019).

摘要

螺异噁唑啉类化合物具有广泛的生物活性,它们是重要的药物中间体,也是重要的有机合成中间体.综述了四十多年来该类化合物的相关报道,依据反应机理,将螺异噁唑啉类化合物的合成方法归纳为以下五种:氧化法、分子内缩合法、亲核加成法、1,3-偶极环加成法和其他方法.其中,应用最广泛的是1,3-偶极环加成法,该方法操作简单、产率高、立体选择性好,但它的合成子环外双键化合物不易获得,一般要经过多步反应才能制备.另外,还将螺异噁唑啉类化合物的生物活性归纳为以下六类:抑制幼虫生长的活性、延缓动脉硬化的活性、治疗疼痛的活性、降低血糖的活性、抗癌的活性、抗菌的活性.

本文引用格式

李明辉, 松布尔, 穆赫塔尔·伊米尔艾山 . 螺异噁唑啉类化合物的合成及生物活性的研究进展[J]. 有机化学, 2018 , 38(2) : 378 -400 . DOI: 10.6023/cjoc201708013

Abstract

Spiroisoxazoline compounds have so extensive biological activity that they are important drug intermediates, and they are also important organic synthetic intermediates. The relevant reports for forty years are reviewed in this paper. On the basis of reaction mechanisms, the synthetic methods of spiroisoxazoline compounds are classified into the following five types:oxidation, intramolecular condensation, nucleophilic addition, 1, 3-dipolar cycloaddition, and other methods. Among them, the most widely used method is 1, 3-dipolar cycloadditio. This method is of simple operation, high yield and good stereoselectivity, but one of its synthons-carbon dipolarophiles is not easy to get, and generally goes through many steps of reaction to prepare. In addition, their biological activities are summarized as six categories:the activity of inhibiting the growth of the larvae, the activity of slowing hardening of the arteries, the activity for the treatment of pain, the activity of lowering blood sugar, the anticancer activity and the antibacterial activity.

参考文献

[1] Wei, R. -B.; Liu, Y.; Liang, Y. Chin. J. Org. Chem. 2009, 29, 476(in Chinese). (魏荣宝, 刘洋, 梁娅, 有机化学, 2009, 29, 476.)
[2] Nicholas, G. M.; Newton, G. L.; Fahey, R. C.; Bewley, C. A. Org. Lett. 2001, 3, 1543.
[3] Gotsbacher, M.; Karuso, P. Mar. Drugs 2015, 13, 1389.
[4] Goyard, D.; Kónya, B.; Chajistamatiou, A. S.; Chrysina, E. D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; Maurel, P.; Somsák, L.; Docsa, T.; Gergely, P.; Praly, J. P.; Milhau, J. A.; Vidal, S. Eur. J. Med. Chem. 2016, 108, 444.
[5] Abolhasani, H.; Zarghi, A.; Mivehroud, M. H.; Alizadeh, A. A.; Mojarrad, J. S.; Dastmalchi, S. Iran. J. Pharm. Res. 2015, 14, 141.
[6] Najim, N.; Bathich Y.; Zain, M. M.; Hamzah, A. S.; Shaameri, Z. Molecules 2010, 15, 9340.
[7] Rotem, M.; Carmely, S.; Kashman, Y.; Loya, Y. Tetrahedron 1983, 39, 667.
[8] Watarai, S.; Katsuyama, H.; Umehara, A.; Sato, H. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 2039.
[9] Dapporto, B. Y.; Paoli, P.; Brandi, A.; Sarlo, F. D.; Goti, A.; Guarna, A. Acta Crystallogr. 1992, B48, 234.
[10] Mullen, G. B.; Bennett, G. A.; Georgiev, V. S. Liebigs Ann. Chem. 1990, 1, 109.
[11] Ihara, M.; Tokunaga, Y. J.; Taniguchi, N.; Fukumoto, K. J. Org. Chem. 1991, 56, 5281.
[12] Occhiato, E. G.; Guarna, A.; Brandi, A.; Goti, A.; Sarlot, F. A. J. Org. Chem. 1992, 57, 4206.
[13] Fišera, L.; Sauter, F.; Fröhlich, Y.; Mereiter, K. Monatsh. Chem. 1994, 125, 909.
[14] Gallos, J. K.; Koftis, T. V. J. Chem. Soc., Perkin Trans. 1 2001, 415.
[15] Singh, A.; Roth, G. P. Org. Lett. 2011, 13, 2118.
[16] Savage, G. P. Curr. Org. Chem. 2010, 14, 1478.
[17] Dadiboyena, S. Curr. Org. Synth. 2013, 10, 661.
[18] Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.
[19] Wang, C. -M.; Wang, Y. -F.; Zhang, G. -X.; Feng, S. -J. J. Beijing Normal Univ. (Nat. Sci. Ed. ) 2001, 37, 787(in Chinese). (齐传民, 王蕴峰, 张关心, 冯淑娟, 北京师范大学学报(自然科学版), 2001, 37, 787.)
[20] Fan, Y. -J.; He, T. -T.; Yang, J. -C.; Liu, C. -L. Agrochem. Res. Appl. 2010, 14, 1(in Chinese). (范玉杰, 赫彤彤, 杨吉春, 刘长令, 农药研究与应用, 2010, 14, 1).
[21] (a) Bathich, Y.; Imerhasan, M.; Henneböhle, M. The 6th Iminiumsalz-Tagung (ImSaT-6), Stimpfach Rechenberg, Stuttgart, 2003, pp. 15~18.
(b) Frey, W.; Imerhasan, M.; Bathich, Y.; Jäger, V. Z. Kristallogr. NCS. 2005, 220, 151.
(c) Jäger, V.; Frey, W.; Bathich, Y.; Shiva, S.; Ibrahim, M.; Henneböhle, M.; LeRoy, P. Y.; Imerhasan, M. Z. Naturforsch. 2010, 65b, 821.
(d) Hudabergen, A. M. S. Thesis, Xinjiang University, Urumqi, 2012(in Chinese). (阿依努尔, 硕士论文, 新疆大学, 乌鲁木齐, 2012.)
[22] Müller, G.; Frischleder, H.; Mühlstädt, M. J. Prakt. Chem. 1969, 311, 118.
[23] Tong, Z. -S.; Gan, G. Z. Acta Chim. Sinica 1983, 41, 380(in Chinese). (童曾寿, 甘贵之, 化学学报, 1984, 41, 380.)
[24] Forrester, A. R.; Thomson, R. H.; Woo, S. O. J. Chem. Soc., Perkin Trans. 1 1975, 2340.
[25] Forrester, A. R.; Thomson, R. H.; Woo, S. O. J. Chem. Soc., Perkin Trans. 1 1975, 2348.
[26] Murakata, M.; Tamura, M.; Hoshino, O. J. Org. Chem. 1997, 62, 4428.
[27] Marsini, M. A.; Huang, Y.; Van De Water, R. W.; Pettus, T. R. Org. Lett. 2007, 9, 3229.
[28] Harhash, A. H.; Elnagdi, M. H.; Kassab, N. A. L.; Negm, A. M. J. Chem. Eng. Data 1975, 20, 120.
[29] Sosnovskikh, V. Y; Usachev, B. I; Sizov, A. Y.; Kodess, M. I. Tetrahedron Lett. 2004, 45, 7351.
[30] Das, P.; Valente, E. J.; Hamme, A. T. Eur. J. Org. Chem. 2014, 13, 2659.
[31] Das, P.; Hamme, I. I.; Ashton, T. Eur. J. Org. Chem. 2015, 23, 5159.
[32] d'Alcontres, G. S.; Caristi, C.; Ferlazzo, A.; Gattuso, M. J. Chem. Soc., Perkin Trans. 1 1976, 1694.
[33] Nesi, R.; Chimichi, S.; Sarti-Fantoni, P.; Tedeschi; Diomi, D. J. Chem. Soc., Perkin Trans. 1 1985, 1871.
[34] Sammelson, R. E.; Gurusinghe, C. D.; Kurth, J. M.; Olmstead, M. M.; Kurth, M. J. J. Org. Chem. 2002, 67, 876.
[35] McClendon, E. M.; Omollo, A. O.; Valente, E. J.; Hamme, A. T. Tetrahedron Lett. 2009, 50, 533.
[36] Das, P.; Omollo, A. O.; Sitole, L. J.; McClendon, E.; Valente, E. J.; Raucher, D.; Walker, L. R.; Hamme, A. T. Tetrahedron Lett. 2015, 56, 1794.
[37] Pearson, W. H.; Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, John Wiley & Sons, New York, 2002, pp. 1~900.
[38] Kobayashi, S.; Jorgensen, K. A. In Cycloadditions in Organic Synthesis, John Wiley & Sons, New York, 2002, pp. 211~328.
[39] Imerhasan, M.; Wang, T.; Setiwaldi, H.; Kurban, O.; Turghun, M. Chin. J. Org. Chem. 2010, 30, 1884(in Chinese). (穆赫塔尔•伊米尔艾山, 王婷, 萨提瓦力迪•海力力, 库尔班•吾斯曼, 吐尔洪•买买提, 有机化学, 2010, 30, 1884.)
[40] Liwayidin, M.; Imerhasan, M.; Mahmud, A. M.; Setiwaldi, H.; Liu, H. J. Chin. J. Org. Chem. 2014, 34, 1235(in Chinese). (力瓦依丁•买合苏提, 穆赫塔尔•伊米尔艾山, 买买提依明•马合木提, 有机化学, 2014, 34, 1235.)
[41] Houk, K. N.; Sims, J.; Duke, R. E.; Strozier, R. W.; George, J. K. J. Am. Chem. Soc. 1973, 95, 7287.
[42] Marquerite, S. C.; James, U. L. Jr. J. Org. Chem. 1967, 32, 1577.
[43] Christoph, G.; Reinhard, R. J. Org. Chem. 1968, 33, 476.
[44] Teruaki, M.; Toshio, H. J. Am. Soc. 1960, 82, 5339.
[45] Li, J. -T.; Li, X., L.; Li, T. S. Chin. J. Org. Chem. 2006, 26, 1594(in Chinese). (李记太, 李晓亮, 李同双, 有机化学, 2006, 26, 1594.)
[46] Li, Z. -G. Preparation of Organic Intermediate, 2nd ed., Chemical Industry Press, Beijing, 2002, p. 315(in Chinese). (李在国, 有机中间体制备, 第二版, 化工出版社, 北京, 2002, p. 315.)
[47] Fan, N. -T. Handbook of Organic Synthesis, Beijing Institute of Technology Press, Beijing, 1992, p. 551(in Chinese). (樊能廷, 有机合成事典, 北京理工大学出版社, 北京, 1992, p. 551.)
[48] Liu, K. -C.; Howe, R. H. J. Org. Chem. 1983, 48, 4590.
[49] Howe, R. K.; Shelton, B. R.; Liu, K. -C. J. Org. Chem. 1985, 50, 903.
[50] Lefkaditis, D. A.; Argyropoulos, N. G.; Nicolaides, D. N. Liebigs Ann. Chem. 1986, 11, 1863.
[51] Guarna, A.; Brandi, A.; Sarlo, F.; Goti, A.; Pericciuoli, F. J. Org. Chem. 1988, 53, 2426.
[52] Fišera, L.; Sauter, F.; Fröhlich, J.; Feng, Y.; Ertl, P.; Mereiter, K. Monatsh. Chem. 1994, 125, 553.
[53] Mishriky, N.; Asaad, F. M.; Ibrahim, Y. A.; Girgis, A. S. J. Chem. Res., Synop. 1997, 12, 438.
[54] Park, K. H.; Kurth, M. J. J. Org. Chem. 2000, 65, 3520.
[55] Cheng, W. C.; Liu, Y. -N.; Wong, M. Y.; Wong, M.; Olmstead, M. M.; Lam, K. S.; Kurth, M. J. Org. Chem. 2002, 67, 5673.
[56] Bardhan, S.; Schmitt, D. C.; Porco, J. A. Jr. Org. Lett. 2006, 8, 927.
[57] Benltifa, M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Msaddek, M.; Praly, J. P. Tetrahedron Lett. 2006, 47, 6143.
[58] Zhang, P. -Z.; Li, X. -L.; Chen, H.; Li, Y. -N.; Wang, R. Tetrahedron Lett. 2007, 48, 7813.
[59] Shih, H. W.; Cheng, W. C. Tetrahedron Lett. 2008, 49, 1008.
[60] Li, X. -F.; Yu, X. -Y.; Yi, P. -G. Chin. J. Chem. 2010, 28, 434.
[61] Guggenheim, K. G.; Butler, J. D.; Painter, P. P.; Lorsbach, B. A.; Tantillo, D. J.; Kurth, M. J. J. Org. Chem. 2011, 76, 5803.
[62] Yu, H. -Y.; Liu, B.; Zheng, A. -T.; Li, X. -F. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed. ) 2012, 27, 90(in Chinese). (余虹宇, 刘彬, 郑爱庭, 李筱芳, 湖南科技大学学报, 2012, 27, 90.)
[63] Li, X.; Yi, R.; Liu, B.; Zheng, A.; Yu, X.; Yi, P. J. Heterocycl. Chem. 2014, 51, 274.
[64] Harding, S. L.; Savage, G. P. Org. Biomol. Chem. 2012, 10, 4759.
[65] Dallanoce, C.; Canovi, M.; Matera, C.; Mennini, T.; De Amici, M.; Gobbi, M.; De Micheli, C. Bioorg. Med. Chem. 2012, 21, 6344.
[66] Khazir, J.; Singh, P. P.; Reddy, D. M.; Hyder, L.; Shafi, S.; Sawant, S. D.; Chashoo, G.; Mahajan, A,; Alam, M. S.; Saxena, A. K.; Arvinda, S.; Gupta, B. D.; Kumar. H. M. S. Eur. J. Med. Chem. 2013, 63, 279.
[67] Ryan, S. J.; Francis, C. L.; Savage, G. P. Aust. J. Chem. 2013, 66, 874.
[68] Lian, X. -J.; Guo, S. -S.; Wang, G.; Lin, L. -L.; Liu, X. -H.; Feng, X. -M. J. Org. Chem. 2014, 79, 7703.
[69] Ryan, S. J.; Francis, C. L.; Savage, G. P. Aust. J. Chem. 2014, 67, 381.
[70] Frank, É.; Kovács, D.; Schneider, G.; Wölfling, J.; Bartók, T.; Zupkó, I. Mol. Diversity 2014, 18, 521.
[71] Somsák, L.; Bokor, É.; Czibere, B.; Czifrák, K.; Koppány, C.; Kulcsár, L.; Kun, S.; Szilágyi, E.; TóTth, M.; Docsa, T.; Gergely, P. Carbohydr. Res. 2014, 399, 38.
[72] Ledovskaya, M. S.; Stepakov, A. V.; Molchanov, A. P.; Kostikov, R. R. Tetrahedon 2015, 71, 7562.
[73] Sabolová, D.; Vilková, M.; Imrich, J.; Potocňák, L. Tertrahedron Lett. 2016, 57, 5592.
[74] Zaki, M.; Oukhrib, A.; Akssira, M.; Raboin, S. B. RSC Adv. 2017, 7, 6523.
[75] Chlenov, L. E.; Petrova, I. M.; Khasapov, B. N.; Karpenko, N, F.; Stepanyants, A. U.; Chizhov, O. S.; Tartakovskii, V. A. Russ. Chem. Bull. 1978, 27, 2278.
[76] Adamo, M. F. A.; Donati, D.; Duffy, E. F.; Sarti-Fantoni, P. J. Org. Chem. 2005, 70, 8395.
[77] Gao, M.; Li, Y.; Gan, Y.; Xu, B. Angew. Chem., Int. Ed. 2015, 54, 8795.
[78] Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Tetrahedron 1996, 52, 8181.
[79] Fisher, M. J.; Jakubowski, J. A.; Masters, J. J.; Mullaney, J. T.; Ruterbories, K. J.; Paal, M.; Ruhter, G.; Schotten, T.; Stenzel, W.; Scarborough, R. M. WO 9711940, 1997[Chem. Abstr. 1997, 126, 317374].
[80] Buschmann, H. H.; Engelberger, G. W.; German, T.; Hennies, H. H.; Maul, C.; Sundermann, B.; Holenz, J. WO 2003000699, 2003[Chem. Abstr. 2003, 138, 73251].
[81] Wang, X. -Y.; Wang, Y. L.; Xu, W. R. Drug Eval. Res. 2012, 35, 42(in Chinese). (王小彦, 王玉丽, 徐为人, 药物评价研究, 2012, 35, 42.)
[82] Chen, J.; Yao, C. Chin. J. New Drug 2009, 18, 307(in Chinese). (陈军, 姚成, 中国新药杂志, 2009, 18, 307.)
[83] Benltifa, M.; Hayes, J. M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Praly, J.; Kizilis, G.; Tiraidis, C.; Alexacou, K. M.; Chrysina, E. D.; Zographos, S. E.; Leonidas, D. D.; Archontis, G.; Oikonomakos, N. G. Bioorg. Med. Chem. 2009, 17, 7368.
[84] Compagnone, R. S.; Avila, R.; Suárez, A. L.; Abrams, O. V.; Rangel, H. R.; Arvelo, F.; Pi, I. C.; Merentes, E. J. Nat. Prod. 1999, 62, 1443.
[85] Baulard, A. R.; Betts, J. C.; Ndog, J. E.; Quan, S.; McAdam, R. A.; Brennan, P. J.; Locht, C.; Besra, G. S.; Baulard, A. R.; Betts, J. C.; Ndog, J. E.; Quan, S.; McAdam, R. A.; Brennan, P. J.; Locht, C.; Besra, G. S. J. Biol. Chem. 2000, 275, 28326.
[86] Willand, N.; Deprez, B.; Baulard, A.; Brodin, P.; Desroses, M. F.; Agouridas-Dutot, L. FR 3000064, 2014[Chem. Abstr. 2014, 161, 156175].
[87] Meng, G. -X.; Qiu, J. X. J. China Pharm. 2004, 15, 76(in Chinese). (孟光兴, 邱家学, 中国药房, 2004, 15, 76.)

文章导航

/