室温下铜催化丙烯酸与膦氧类化合物的脱羧偶联反应
收稿日期: 2017-08-23
修回日期: 2017-09-20
网络出版日期: 2017-09-26
基金资助
国家自然科学基金(Nos.21102134,21172200)资助项目.
Copper-Catalyzed Decarboxylative Coupling of Alkenyl Acids with P(O)H Compounds at Room Temperature
Received date: 2017-08-23
Revised date: 2017-09-20
Online published: 2017-09-26
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21102134, 21172200).
乔辉杰 , 孙素颜 , 康建勋 , 杨帆 , 吴豫生 , 吴养洁 . 室温下铜催化丙烯酸与膦氧类化合物的脱羧偶联反应[J]. 有机化学, 2018 , 38(1) : 86 -94 . DOI: 10.6023/cjoc201708049
A simple and mild protocol for the copper-catalyzed decarboxylative coupling of alkenyl acids with P(O)H compounds was developed, thus providing a facile route to the vinylphosphorus compounds. Moreover, the reaction could also afford β-ketophosphorus compounds as the major products in air using oxygen as an oxidant. In addition, the remarkable features of these two types of reactions include excellent reaction chemoselectivity, good functional group tolerance and mild reaction conditions (e.g., cheap oxidant, ligand-free condition and room temperature).
Key words: copper catalysis; decarboxylative coupling; alkenyl acids; P(O)H compounds
[1] (a) Minami, T.; Motoyoshiya, J. Synthesis 1992, 333.
(b) Wang, H.-Q.; Liu, Z.-J. Chin. J. Org. Chem. 2003, 23, 321.
[2] (a) Jin, S.; Gonsalves, K. E. Macromolecules 1998, 31, 1010.
(b) Price, D.; Pyrah, K.; Hull, T. R.; Milnes, G. J.; Ebdon, J. R.; Hunt, B. J.; Joseph, P. Polym. Degrad. Stab. 2002, 77, 227.
[3] (a) Harnden, M. R.; Parkin, A.; Parratt, M. J.; Perkins, R. M. J. Med. Chem. 1993, 36, 1343.
(b) Lazrek, H. B.; Rochdi, A.; Khaider, H.; Barascut, J.-L.; Imbach, J.-L.; Balzarini, J.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Tetrahedron 1998, 54, 3807.
[4] (a) Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. Synlett 2001, 1034.
(b) Bisaro, F.; Gouverneur, V. Tetrahedron Lett. 2003, 44, 7133.
(c) Vinokurov, N.; Michrowska, A.; Szmigielska, A.; Drzazga, Z.; Wójciuk, G.; Demchuk, O. M.; Grela, K.; Pietrusiewicz, K. M.; Butenschön, H. Adv. Synth. Catal. 2006, 348, 931.
[5] (a) Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222.
(b) Burini, A.; Cacchi, S.; Pace, P.; Pietroni, B. R. Synlett 1995, 677.
(c) Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.
[6] (a) Mao, L.-L.; Zhou, A.-X.; Liu, N.; Yang, S.-D. Synlett 2014, 25, 2727.
(b) Gui, Q.; Hu, L.; Chen, X.; Liu, J.; Tan, Z. Chem. Commun. 2015, 51, 13922.
(c) Zhang, G.-Y.; Li, C.-K.; Li, D.-P.; Shoberu, A.; Zou, J.-P. Tetrahedron 2016, 72, 2972.
(d) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang. G.; Lei, A. Chem. Commun. 2016, 52, 12338.
(e) Gu, J.; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.
[7] (a) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. I.; Pla-Dalmau, A.; Khanna, R. K. J. Am. Chem. Soc. 1988, 110, 3530.
(b) Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.
(c) Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179.
(d) Xu, K.; Hu, H.; Yang, F.; Wu, Y. Eur. J. Org. Chem. 2013, 319.
(e) Jouvin, K.; Coste, A.; Bayle, A.; Legrand, F.; Karthikeyan, G.; Tadiparthi, K.; Evano, G. Organometallics 2012, 31, 7933.
(f) Liu, L.; Wang, Y.; Zeng, Z.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y. Adv. Synth. Catal. 2013, 355, 659.
(g) Iranpoor, N.; Firouzabadi, H.; Moghadam, K. R.; Motavalli, S. RSC Adv. 2014, 4, 55732.
[8] Lin, Y.; Lu, G.; Wang, R.; Yi, W. Org. Lett. 2017, 19, 1100.
[9] (a) Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729.
(b) Zhuang, R.; Xu, J.; Cai, Z.; Tang, G.; Fang, M.; Zhao, Y. Org. Lett. 2011, 13, 2110.
[10] (a) Xue, J.-F.; Zhou, S.-F.; Liu, Y.-Y.; Pan, X.; Zou, J.-P.; Asekun, O. T. Org. Biomol. Chem. 2015, 13, 4896.
(b) Yuan, J.-W.; Yang, L.-R.; Mao, P.; Qu, L.-B. RSC Adv. 2016, 6, 87058.
(c) Yuan, J.-W.; Li, Y.-Z.; Mai, W.-P.; Yang, L.-R.; Qu, L.-B. Tetrahedron 2016, 72, 3084.
[11] Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681.
[12] (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.
(b) Zhao, C.-Q.; Han, L.-B.; Goto, M.; Tanaka, M. Angew. Chem. Int. Ed. 2001, 40, 1929.
(c) Han, L.-B.; Zhao, C.-Q.; Onozawa, S.-Y.; Goto, M.; Tanaka, M. J. Am. Chem. Soc. 2002, 124, 3842.
(d) Lai, C.; Xi, C.; Chen, C.; Ma, M.; Hong, X. Chem. Commun. 2003, 2736.
(e) Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.
(f) Kuramshin, A. I.; Nikolaev, A. A.; Cherkasov, R. A. Mendeleev Commun. 2005, 15, 155.
(g) Nune, S. K.; Tanaka, M. Chem. Commun. 2007, 2858.
(h) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2007, 272.
(i) Han, L.-B.; Ono, Y.; Shimada, S. J. Am. Chem. Soc. 2008, 130, 27.
(j) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2010, 352, 2979.
(k) Khemchyan, L. L.; Lvanova, J. V.; Zalesskiy, S. S.; Ananikov, V. P.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2014, 356, 771.
(l) Liu, L.; Wu, Y.; Wang, Z.; Zhu, J.; Zhao, Y. J. Org. Chem. 2014, 79, 6816.
(m) Braun, R. A.; Bradfield, J. L.; Henderson, C. B.; Mobarrez, N.; Sheng, Y.; O'Brien, R. A.; Stenson, A. C.; Davis Jr., J. H.; Mirjafari, A. Green Chem. 2015, 17, 1259.
[13] (a) Borah, A. J.; Yan, G. Org. Biomol. Chem. 2015, 13, 8094.
(b) Chary, V. S.; Rajanna, K. C.; Krishnaiaha, G.; Srinivas, P. Catal. Sci. Technol. 2016, 6, 1430.
(c) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.
(d) Zhang, H.-R.; Chen, D.-Q.; Han, Y.-P.; Qiu, Y.-F.; Jin, D.-P.; Liu, X.-Y. Chem. Commun. 2016, 52, 11827.
(e) Kadari, L.; Palakodety, R. K.; Yallapragada, L. P. Org. Lett. 2017, 19, 2580.
[14] Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 5516.
[15] Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118.
[16] Qiao, H.; Sun, S.; Zhang, Y.; Zhu, H.; Yu, X.; Yang, F.; Wu, Y.; Li, Z.; Wu, Y. Org. Chem. Front. 2017, 4, 1981.
[17] Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 9727.
[18] Hu, G.; Gao, Y.; Zhao, Y. Org. Lett. 2014, 16, 4464.
[19] Kondoh, A; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81, 502.
[20] Harmata, M.; Rayanil, K.; Espejo, V. R.; Barnes, C. L. J. Org. Chem. 2009, 74, 3214.
[21] Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604.
[22] Zhang, P.; Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 7839.
[23] Miyaji, T.; Xi, Z.; Ogasawara, M.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2007, 72, 8737.
/
| 〈 |
|
〉 |