研究论文

室温下铜催化丙烯酸与膦氧类化合物的脱羧偶联反应

  • 乔辉杰 ,
  • 孙素颜 ,
  • 康建勋 ,
  • 杨帆 ,
  • 吴豫生 ,
  • 吴养洁
展开
  • a 郑州大学化学与分子工程学院 河南省化学生物与有机化学重点实验室河南省高校应用化学重点实验室 郑州 450052;
    b 郑州泰基鸿诺医药股份有限公司 郑州 450052;
    c 河南省新药创制与药物安全性评价协同创新中心 郑州 450001

收稿日期: 2017-08-23

  修回日期: 2017-09-20

  网络出版日期: 2017-09-26

基金资助

国家自然科学基金(Nos.21102134,21172200)资助项目.

Copper-Catalyzed Decarboxylative Coupling of Alkenyl Acids with P(O)H Compounds at Room Temperature

  • Qiao Huijie ,
  • Sun Suyan ,
  • Kang Jianxun ,
  • Yang Fan ,
  • Wu Yusheng ,
  • Wu Yangjie
Expand
  • a College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052;
    b Tetranov Biopharm, LLC., Zhengzhou 450052;
    c Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001

Received date: 2017-08-23

  Revised date: 2017-09-20

  Online published: 2017-09-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21102134, 21172200).

摘要

发展了一种简单而又温和的铜催化芳基丙烯酸与膦氧类化合物脱羧偶联反应,提供了一种合成烯基膦类化合物的途径;以空气中的氧气作为氧化剂,反应生成β-酮基膦化合物为主的产物.这两类反应的显著特点包括:优秀的化学反应选择性、良好的官能团兼容性以及温和的反应条件(如便宜的氧化剂、无配体参与和室温环境等).

本文引用格式

乔辉杰 , 孙素颜 , 康建勋 , 杨帆 , 吴豫生 , 吴养洁 . 室温下铜催化丙烯酸与膦氧类化合物的脱羧偶联反应[J]. 有机化学, 2018 , 38(1) : 86 -94 . DOI: 10.6023/cjoc201708049

Abstract

A simple and mild protocol for the copper-catalyzed decarboxylative coupling of alkenyl acids with P(O)H compounds was developed, thus providing a facile route to the vinylphosphorus compounds. Moreover, the reaction could also afford β-ketophosphorus compounds as the major products in air using oxygen as an oxidant. In addition, the remarkable features of these two types of reactions include excellent reaction chemoselectivity, good functional group tolerance and mild reaction conditions (e.g., cheap oxidant, ligand-free condition and room temperature).

参考文献

[1] (a) Minami, T.; Motoyoshiya, J. Synthesis 1992, 333.
(b) Wang, H.-Q.; Liu, Z.-J. Chin. J. Org. Chem. 2003, 23, 321.
[2] (a) Jin, S.; Gonsalves, K. E. Macromolecules 1998, 31, 1010.
(b) Price, D.; Pyrah, K.; Hull, T. R.; Milnes, G. J.; Ebdon, J. R.; Hunt, B. J.; Joseph, P. Polym. Degrad. Stab. 2002, 77, 227.
[3] (a) Harnden, M. R.; Parkin, A.; Parratt, M. J.; Perkins, R. M. J. Med. Chem. 1993, 36, 1343.
(b) Lazrek, H. B.; Rochdi, A.; Khaider, H.; Barascut, J.-L.; Imbach, J.-L.; Balzarini, J.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Tetrahedron 1998, 54, 3807.
[4] (a) Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. Synlett 2001, 1034.
(b) Bisaro, F.; Gouverneur, V. Tetrahedron Lett. 2003, 44, 7133.
(c) Vinokurov, N.; Michrowska, A.; Szmigielska, A.; Drzazga, Z.; Wójciuk, G.; Demchuk, O. M.; Grela, K.; Pietrusiewicz, K. M.; Butenschön, H. Adv. Synth. Catal. 2006, 348, 931.
[5] (a) Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222.
(b) Burini, A.; Cacchi, S.; Pace, P.; Pietroni, B. R. Synlett 1995, 677.
(c) Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.
[6] (a) Mao, L.-L.; Zhou, A.-X.; Liu, N.; Yang, S.-D. Synlett 2014, 25, 2727.
(b) Gui, Q.; Hu, L.; Chen, X.; Liu, J.; Tan, Z. Chem. Commun. 2015, 51, 13922.
(c) Zhang, G.-Y.; Li, C.-K.; Li, D.-P.; Shoberu, A.; Zou, J.-P. Tetrahedron 2016, 72, 2972.
(d) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang. G.; Lei, A. Chem. Commun. 2016, 52, 12338.
(e) Gu, J.; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.
[7] (a) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. I.; Pla-Dalmau, A.; Khanna, R. K. J. Am. Chem. Soc. 1988, 110, 3530.
(b) Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.
(c) Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179.
(d) Xu, K.; Hu, H.; Yang, F.; Wu, Y. Eur. J. Org. Chem. 2013, 319.
(e) Jouvin, K.; Coste, A.; Bayle, A.; Legrand, F.; Karthikeyan, G.; Tadiparthi, K.; Evano, G. Organometallics 2012, 31, 7933.
(f) Liu, L.; Wang, Y.; Zeng, Z.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y. Adv. Synth. Catal. 2013, 355, 659.
(g) Iranpoor, N.; Firouzabadi, H.; Moghadam, K. R.; Motavalli, S. RSC Adv. 2014, 4, 55732.
[8] Lin, Y.; Lu, G.; Wang, R.; Yi, W. Org. Lett. 2017, 19, 1100.
[9] (a) Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729.
(b) Zhuang, R.; Xu, J.; Cai, Z.; Tang, G.; Fang, M.; Zhao, Y. Org. Lett. 2011, 13, 2110.
[10] (a) Xue, J.-F.; Zhou, S.-F.; Liu, Y.-Y.; Pan, X.; Zou, J.-P.; Asekun, O. T. Org. Biomol. Chem. 2015, 13, 4896.
(b) Yuan, J.-W.; Yang, L.-R.; Mao, P.; Qu, L.-B. RSC Adv. 2016, 6, 87058.
(c) Yuan, J.-W.; Li, Y.-Z.; Mai, W.-P.; Yang, L.-R.; Qu, L.-B. Tetrahedron 2016, 72, 3084.
[11] Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681.
[12] (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.
(b) Zhao, C.-Q.; Han, L.-B.; Goto, M.; Tanaka, M. Angew. Chem. Int. Ed. 2001, 40, 1929.
(c) Han, L.-B.; Zhao, C.-Q.; Onozawa, S.-Y.; Goto, M.; Tanaka, M. J. Am. Chem. Soc. 2002, 124, 3842.
(d) Lai, C.; Xi, C.; Chen, C.; Ma, M.; Hong, X. Chem. Commun. 2003, 2736.
(e) Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.
(f) Kuramshin, A. I.; Nikolaev, A. A.; Cherkasov, R. A. Mendeleev Commun. 2005, 15, 155.
(g) Nune, S. K.; Tanaka, M. Chem. Commun. 2007, 2858.
(h) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2007, 272.
(i) Han, L.-B.; Ono, Y.; Shimada, S. J. Am. Chem. Soc. 2008, 130, 27.
(j) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2010, 352, 2979.
(k) Khemchyan, L. L.; Lvanova, J. V.; Zalesskiy, S. S.; Ananikov, V. P.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2014, 356, 771.
(l) Liu, L.; Wu, Y.; Wang, Z.; Zhu, J.; Zhao, Y. J. Org. Chem. 2014, 79, 6816.
(m) Braun, R. A.; Bradfield, J. L.; Henderson, C. B.; Mobarrez, N.; Sheng, Y.; O'Brien, R. A.; Stenson, A. C.; Davis Jr., J. H.; Mirjafari, A. Green Chem. 2015, 17, 1259.
[13] (a) Borah, A. J.; Yan, G. Org. Biomol. Chem. 2015, 13, 8094.
(b) Chary, V. S.; Rajanna, K. C.; Krishnaiaha, G.; Srinivas, P. Catal. Sci. Technol. 2016, 6, 1430.
(c) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.
(d) Zhang, H.-R.; Chen, D.-Q.; Han, Y.-P.; Qiu, Y.-F.; Jin, D.-P.; Liu, X.-Y. Chem. Commun. 2016, 52, 11827.
(e) Kadari, L.; Palakodety, R. K.; Yallapragada, L. P. Org. Lett. 2017, 19, 2580.
[14] Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 5516.
[15] Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao Y. J. Org. Chem. 2014, 79, 8118.
[16] Qiao, H.; Sun, S.; Zhang, Y.; Zhu, H.; Yu, X.; Yang, F.; Wu, Y.; Li, Z.; Wu, Y. Org. Chem. Front. 2017, 4, 1981.
[17] Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 9727.
[18] Hu, G.; Gao, Y.; Zhao, Y. Org. Lett. 2014, 16, 4464.
[19] Kondoh, A; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81, 502.
[20] Harmata, M.; Rayanil, K.; Espejo, V. R.; Barnes, C. L. J. Org. Chem. 2009, 74, 3214.
[21] Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604.
[22] Zhang, P.; Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 7839.
[23] Miyaji, T.; Xi, Z.; Ogasawara, M.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2007, 72, 8737.

文章导航

/