综述与进展

闭路智能胰岛素载药体系的研究进展

  • 李臻益 ,
  • 胡晓玉 ,
  • 强琚莉 ,
  • 张冬梅 ,
  • 肖守军 ,
  • 林晨 ,
  • 王乐勇
展开
  • a 南京大学化学化工学院 南京 210023;
    b 南京大学生命科学学院 医药生物技术国家重点实验室 南京 210023

收稿日期: 2017-08-31

  修回日期: 2017-09-19

  网络出版日期: 2017-09-26

基金资助

国家自然科学基金(Nos.21672102,21572101)资助项目.

Recent Advances in Closed-Loop and Smart Insulin Delivery Systems

  • Li Zhenyi ,
  • Hu Xiaoyu ,
  • Jiang Juli ,
  • Zhang Dongmei ,
  • Xiao Shoujun ,
  • Lin Chen ,
  • Wang Leyong
Expand
  • a School of Chemistry and Chmeical Engineering, Nanjing University, Nanjing 210023;
    b State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023

Received date: 2017-08-31

  Revised date: 2017-09-19

  Online published: 2017-09-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672102, 21572101).

摘要

胰岛素是临床上I型及Ⅱ型糖尿病的常用治疗药物,能有效控制人体血糖浓度,是目前治疗糖尿病最有效的方法之一.现阶段胰岛素主要的给药方式为皮下注射,但长期频繁的皮下注射给患者带来很多毒副作用,如疼痛感、局部组织麻痹或感染以及神经受损等.近年来,随着纳米技术的日益成熟,许多新颖的闭路智能胰岛素载药体系得到了广泛发展.本综述主要从胰岛素载药体系的响应机制、新型载药母体的构筑方法以及智能释放的调控原理等角度概述了近年来闭路智能胰岛素载药体系的发展概况,分析了现阶段胰岛素载药体系的优缺点,并指出其未来发展面临的机遇与挑战.

本文引用格式

李臻益 , 胡晓玉 , 强琚莉 , 张冬梅 , 肖守军 , 林晨 , 王乐勇 . 闭路智能胰岛素载药体系的研究进展[J]. 有机化学, 2018 , 38(1) : 29 -39 . DOI: 10.6023/cjoc201708065

Abstract

Insulin is a commonly prescribed drug for the treatment of type I and type Ⅱ diabetes. As for the efficiency in controlling blood glucose level, insulin therapy is one of the most effective treatments for diabetes. The current administration route of insulin is mainly through subcutaneous injection, which leads to many undesirable side effects such as pain, local tissue necrosis or infection, and nerve damage. Recently, various closed-loop and smart insulin delivery systems have been developed based on the emerging nanotechnologies. Recent progress in the construction of closed-loop and smart insulin delivery system, which mainly focuses on the response mechanism, different strategies for fabricating the carrier matrix, and the regulation principle of the smart insulin release is described. Advantages and drawbacks of the current insulin delivery systems are also discussed, along with the opportunities and challenges in future.

参考文献

[1] (a) Stumvoll, M.; Goldstein, B. J.; van Haeften, T. W. Lancet 2005, 365, 1333.
(b) Atkinson, M. A.; Eisenbarth, G. S. Lancet 2001, 358, 221.
[2] (a) Bach, J. F. Endocr. Rev. 1994, 15, 516.
(b) Eisenbarth, G. S.; Flier, J. S.; Cahill, G. N. Engl. J. Med. 1986, 314, 1360.
(c) Tisch, R.; McDevitt, H. Cell 1996, 85, 291.
[3] (a) Concannon, P.; Rich, S. S.; Nepom, G. T. N. Engl. J. Med. 2009, 360, 1646.
(b) Daneman, D. Lancet 2006, 367, 847.
(c) Davies, J. L.; Kawaguchi, Y.; Bennett, S. T.; Copeman, J. B.; Cordell, H. J.; Pritchard, L. E.; Reed, P. W.; Gough, S. C. L.; Jenkins, S. C.; Palmer, S. M.; Balfour, K. M.; Rowe, B. R.; Farrall, M.; Barnett, A. H.; Bain, S. C.; Todd, J. A. Nature 1994, 371, 130.
[4] (a) Boden, G.; Shulman, G. I. Eur. J. Clin. Invest. 2002, 32, 14.
(b) Sturnvoll, M.; Goldstein, B. J.; van Haeften, T. W. Endocr. Res. 2007, 32, 19.
[5] (a) Hamaty, M. Cleve. Clin. J. Med. 2011, 78, 332.
(b) Hayward, R. A.; Manning, W. G.; Kaplan, S. H.; Wagner, E. H.; Greenfield, S. J. Am. Med. Assoc. 1997, 278, 1663.
[6] (a) Owens, D. R.; Zinman, B.; Bolli, G. B. Lancet 2001, 358, 739.
(b) Gualandi-Signorini, A. M.; Giorgi, G. Eur. Rev. Med. Pharmacol. Sci. 2001, 5, 73.
[7] Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H. P.; Wolffram, S.; Amidon, G. L.; Yamashita, S. J. Controlled Release 1997, 46, 39.
[8] (a) Heinemann, L.; Pfutzner, A.; Heise, T. Curr. Pharm. Des. 2001, 7, 1327.
(b) Owens, D. R. Nat. Rev. Drug Discovery 2002, 1, 529.
[9] (a) Buzasi, K.; Sapi, Z.; Jermendy, G. Diabetes Res. Clin. Pract. 2011, 94, E34.
(b) Chantelau, E.; Spraul, M.; Muhlhauser, I.; Gause, R.; Berger, M. Diabetologia 1989, 32, 421.
(c) Richardson, T.; Kerr, D. Am. J. Clin. Dermatol. 2003, 4, 661.
[10] (a) Jeandidier, N.; Boivin, S. Adv. Drug Delivery Rev. 1999, 35, 179.
(b) Wu, W.; Zhou, S. Macromol. Biosci. 2013, 13, 1464.
(c) Bratlie, K. M.; York, R. L.; Invernale, M. A.; Langer, R.; Anderson, D. G. Adv. Healthcare Mater. 2012, 1, 267.
(d) Ravaine, V.; Ancla, C.; Catargi, B. J. Controlled Release 2008, 132, 2.
[11] (a) Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. ACS Nano 2013, 7, 4194.
(b) Zhang, Y. Q.; Yu, J. C.; Shen, Q. D.; Gu, Z. Prog. Chem. 2015, 27, 11(in Chinese).(张宇琪, 俞计成, 沈群东, 顾臻, 化学进展, 2015, 27, 11.)
[12] Gao, L.; Wang, T.; Jia, K.; Wu, X.; Yao, C.; Shao, W.; Zhang, D.; Hu, X.-Y.; Wang, L. Chem.-Eur. J. 2017, 23, 6605.
[13] Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Chem. Soc. Rev. 2014, 43, 3595.
[14] Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Biotechnol. Adv. 2009, 27, 489.
[15] (a) Steiner, M.-S.; Duerkop, A.; Wolfbeis, O. S. Chem. Soc. Rev. 2011, 40, 4805.
(b) Wu, Q.; Wang, L.; Yu, H.; Wang, J.; Chen, Z. Chem. Rev. 2011, 111, 7855.
[16] (a) Gordijo, C. R.; Koulajian, K.; Shuhendler, A. J.; Bonifacio, L. D.; Huang, H. Y.; Chiang, S.; Ozin, G. A.; Giacca, A.; Wu, X. Y. Adv. Funct. Mater. 2011, 21, 73.
(b) Zhao, W.; Zhang, H.; He, Q.; Li, Y.; Gu, J.; Li, L.; Li, H.; Shi, J. Chem. Commun. 2011, 47, 9459.
[17] Gordijo, C. R.; Shuhendler, A. J.; Wu, X. Y. Adv. Funct. Mater. 2010, 20, 1404.
[18] Kim, M. Y.; Kim, J. ACS Biomater. Sci Eng. 2017, 3, 572.
[19] Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.
[20] Tai, W.; Mo, R.; Di, J.; Subramanian, V.; Gu, X.; Buse, J. B.; Gu, Z. Biomacromolecules 2014, 15, 3495.
[21] Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323.
[22] Napoli, A.; Boerakker, M. J.; Tirelli, N.; Nolte, R. J. M.; Sommerdijk, N.; Hubbell, J. A. Langmuir 2004, 20, 3487.
[23] (a) Kohen, R. Biomed. Pharmacother. 1999, 53, 181.
(b) Liu, Y.; Du, J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H.; Li, J.; Zhu, X.; Shi, L.; Chen, W.; Ji, C.; Lu, Y. Nat. Nanotechnol. 2013, 8, 187.
[24] Hu, X.; Yu, J.; Qian, C.; Lu, Y.; Kahkoska, A. R.; Xie, Z.; Jing, X.; Buse, J. B.; Gu, Z. ACS Nano 2017, 11, 613.
[25] Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Nat. Rev. Drug Discovery 2015, 14, 45.
[26] (a) Donnelly, R. F.; Singh, T. R. R.; Woolfson, A. D. Drug Delivery 2010, 17, 187.
(b) Yang, S.; Wu, F.; Liu, J.; Fan, G.; Welsh, W.; Zhu, H.; Jin, T. Adv. Funct. Mater. 2015, 25, 4633.
[27] (a) Harvey, A. J.; Kaestner, S. A.; Sutter, D. E.; Harvey, N. G.; Mikszta, J. A.; Pettis, R. J. Pharm. Res. 2011, 28, 107.
(b) Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13399.
[28] (a) Krohn, K. A.; Link, J. M.; Mason, R. P. J. Nucl. Med. 2008, 49, 129S.
(b) Nunn, A.; Linder, K.; Strauss, H. W. Eur. J. Nucl. Med. 1995, 22, 265.
[29] (a) Edwards, D. I. J. Antimicrob. Chemother. 1993, 31, 9.
(b) Takasawa, M.; Moustafa, R. R.; Baron, J.-C. Stroke 2008, 39, 1629.
[30] Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8260.
[31] Yu, J.; Qian, C.; Zhang, Y.; Cui, Z.; Zhu, Y.; Shen, Q.; Ligler, F. S.; Buse, J. B.; Gu, Z. Nano Lett. 2017, 17, 733.
[32] Ye, T.; Bai, X.; Jiang, X.; Wu, Q.; Chen, S.; Qu, A.; Huang, J.; Shen, J.; Wu, W. Polym. Chem. 2016, 7, 2847.
[33] Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769.
[34] Preinerstorfer, B.; Laemmerhofer, M.; Lindner, W. J. Sep. Sci. 2009, 32, 1673.
[35] (a) Miyake, K.; Tanaka, T.; McNeil, P. L. PLoS One 2007, 2.
(b) Vaz, A. F. M.; Souza, M. P.; Vieira, L. D.; Aguiar, J. S.; Silva, T. G.; Medeiros, P. L.; Melo, A. M. M. A.; Silva-Lucca, R. A.; Santana, L. A.; Oliva, M. L. V.; Perez, K. R.; Cuccovia, I. M.; Coelho, L. C. B. B.; Correia, M. T. S. Radiat. Phys. Chem. 2013, 85, 218.
[36] Huang, Y.-J.; Ouyang, W.-J.; Wu, X.; Li, Z.; Fossey, J. S.; James, T. D.; Jiang, Y.-B. J. Am. Chem. Soc. 2013, 135, 1700.
[37] (a) Van den Berghe, G.; Wilmer, A.; Hermans, G.; Meersseman, W.; Wouters, P. J.; Milants, I.; Van Wijngaerden, E.; Bobbaers, H.; Bouillon, R. N. Engl. J. Med. 2006, 354, 449.
(b) Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. N. Engl. J. Med. 2001, 345, 1359.
[38] Wu, W.; Mitra, N.; Yan, E. C. Y.; Zhou, S. ACS Nano 2010, 4, 4831.
[39] (a) Alexeev, V. L.; Sharma, A. C.; Goponenko, A. V.; Das, S.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N.; Asher, S. A. Anal. Chem. 2003, 75, 2316.
(b) Zhang, C.; Losego, M. D.; Braun, P. V. Chem. Mater. 2013, 25, 3239.
[40] Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. Biomaterials 1994, 15, 121.
[41] Zhang, C.; Cano, G. G.; Braun, P. V. Adv. Mater. 2014, 26, 5678.
[42] Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.
[43] Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10753.
[44] Wang, B.; Ma, R.; Liu, G.; Liu, X.; Gao, Y.; Shen, J.; An, Y.; Shi, L. Macromol. Rapid Commun. 2010, 31, 1628.
[45] Ma, R.; Yang, H.; Li, Z.; Liu, G.; Sun, X.; Liu, X.; An, Y.; Shi, L. Biomacromolecules 2012, 13, 3409.
[46] Yang, H.; Sun, X.; Liu, G.; Ma, R.; Li, Z.; An, Y.; Shi, L. Soft Matter 2013, 9, 8589.
[47] Yao, Y.; Zhao, L.; Yang, J.; Yang, J. Biomacromolecules 2012, 13, 1837.
[48] (a) Cao, Y.; Zou, X.; Xiong, S.; Li, Y.; Shen, Y.; Hu, X.; Wang, L. Chin. J. Chem. 2015, 33, 329.
(b) Hu, X.-Y.; Jia, K.; Cao, Y.; Li, Y.; Qin, S.; Zhou, F.; Lin, C.; Zhang, D.; Wang, L. Chem.-Eur. J. 2015, 21, 1208.
(c) Jie, K.; Zhou, Y.; Yao, Y.; Huang, F. Chem. Soc. Rev. 2015, 44, 3568.
[49] (a) Chi, X.; Yu, G.; Ji, X.; Li, Y.; Tang, G.; Huang, F. ACS Macro Lett. 2015, 4, 996.
(b) Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; Jia, X.; Sessler, J. L.; Meng, Q.; Li, C. Chem. Sci. 2017, 8, 4458.
[50] (a) Li, C.; Shu, X.; Li, J.; Chen, S.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. J. Org. Chem. 2011, 76, 8458.
(b) Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Org. Biomol. Chem. 2010, 8, 1568.
[51] (a) Cheng, C.; Zhang, X.; Xiang, J.; Wang, Y.; Zheng, C.; Lu, Z.; Li, C. Soft Matter 2012, 8, 765.
(b) Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. Carbohydr. Polym. 2012, 89, 124.
[52] Guo, Q.; Wu, Z.; Zhang, X.; Sun, L.; Li, C. Soft Matter 2014, 10, 911.
[53] Chang, Y.-J.; Liu, X.-Z.; Zhao, Q.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.
[54] (a) Lee, C.-H.; Cheng, S.-H.; Wang, Y.; Chen, Y.-C.; Chen, N.-T.; Souris, J.; Chen, C.-T.; Mou, C.-Y.; Yang, C.-S.; Lo, L.-W. Adv. Funct. Mater. 2009, 19, 215.
(b) Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y. Small 2009, 5, 57.
(c) Taylor, K. M. L.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W. J. Am. Chem. Soc. 2008, 130, 2154.
[55] (a) Charles, M. A.; Fanska, R.; Schmid, F. G.; Forsham, P. H.; Grodsky, G. M. Science 1973, 179, 569.
(b) Dyachok, O.; Idevall-Hagren, O.; Sagetorp, J.; Tian, G.; Wuttke, A.; Arrieumerlou, C.; Akusjarvi, G.; Gylfe, E.; Tengholm, A. Cell Metabolism 2008, 8, 26.
[56] Tengholm, A. Upsala J. Med. Sci. 2012, 117, 355.
[57] Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y. J. Am. Chem. Soc. 2009, 131, 8398.
[58] Geijtenbeek, T. B. H.; Gringhuis, S. I. Nat. Rev. Immunol. 2009, 9, 465.
[59] Sharon, N.; Lis, H. Science 1972, 177, 949.
[60] (a) Brownlee, M.; Cerami, A. Science 1979, 206, 1190.
(b) Seminoff, L. A.; Gleeson, J. M.; Zheng, J.; Olsen, G. B.; Holmberg, D.; Mohammad, S. F.; Wilson, D.; Kim, S. W. Int. J. Pharm. 1989, 54, 251.
[61] Yin, R.; Tong, Z.; Yang, D.; Nie, J. Int. J. Biol. Macromol. 2011, 49, 1137.
[62] Wu, S.; Huang, X.; Du, X. Angew. Chem., Int. Ed. 2013, 52, 5580.
[63] (a) Brogden, R. N.; Heel, R. C. Drugs 1987, 34, 350.
(b) Reichard, P.; Nilsson, B. Y.; Rosenqvist, U. N. Engl. J. Med. 1993, 329, 304.
[64] Jain, S.; Hreczuk-Hirst, D. H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G. Biochim. Biophys. Acta, Gen. Subj. 2003, 1622, 42.
[65] Bergenstal, R. M.; Rosenstock, J.; Arakaki, R. F.; Prince, M. J.; Qu, Y.; Sinha, V. P.; Howey, D. C.; Jacober, S. J. Diabetes Care 2012, 35, 2140.

文章导航

/