收稿日期: 2017-09-08
修回日期: 2017-09-29
网络出版日期: 2017-10-11
基金资助
国家自然科学基金(Nos.21390400,21672217,21521002)资助项目.
History and Development
Received date: 2017-09-08
Revised date: 2017-09-29
Online published: 2017-10-11
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21672217, 21521002).
华煜晖 , 张弘 , 夏海平 . 芳香性:历史与发展[J]. 有机化学, 2018 , 38(1) : 11 -28 . DOI: 10.6023/cjoc201709009
Aromaticity is one of the most fundamental concept in organic chemistry. Aromatic compounds generally present special thermodynamic stability. Research on aromaticity can help us to understand the stability essence of aromatic compounds, and thus enables the further prediction and construction of species with stabilization or destablization. The endless richness of aromaticity researches usually originates the nature and criterion of aromaticity. The main emphasis of this review is on a discussion of historical discoveries, definitions and classification of aromaticity-related structural types, as well as various theoretically and experimentally criterions. Furthermore, this review contains the recent development of aromaticity illustrated by recent representative examples.
Key words: aromaticity; anti-aromaticity; definition; criterion; classification
[1] Faraday, M. Philos. Trans. R. Soc. London 1825, 115, 440.
[2] Schleyer, P. v. R. Pure Appl. Chem. 1996, 68, 209.
[3] Feng, J. K. J. Mol. Sci. 2005, 21, 1(in Chinese).(封继康, 分子科学学报, 2005, 21, 1.)
[4] Lloyd, D. J. Chem. Inf. Comput. Sci. 1996, 36, 442.
[5] (a) Kekulé, A. Bull. Soc. Chim. Paris 1865, 3, 98.
(b) Kekulé, A. Ann. 1866, 137, 129.
(c) Kekulé, A. Ann. 1872, 162, 77.
[6] Erlenmeyer, E. Ann. 1866, 137, 327.
[7] Pascal, P. Ann. Chim. Phys. 1910, 19, 5.
[8] Armit, J. W.; Robinson, R. J. Chem. Soc. 1925, 127, 1604.
[9] Hückel, E. Z. Phys. 1931, 70, 204.
[10] Pauling, L. J. Chem. Phys. 1936, 4, 673.
[11] Wheland, G. W. Resonance in Organic Chemistry, Wiley, New York, 1955.
[12] London, F. J. Phys. Radium 1937, 8, 397.
[13] Pople, J. A. J. Chem. Phys. 1956, 24, 1111.
[14] Craig, D. P. Nature 1958, 181, 1052.
[15] Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923.
[16] Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 685.
[17] (a) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811.
(b) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991.
(c) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. In Non-Benzenoid Aromatics, Ed.:Snyder, J. P., Vol. 2, Academic Press, New York, 1971.
[18] (a) Benson, R. C.; Flygare, W. H. J. Am. Chem Soc. 1970, 92, 7523.
(b) Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem Soc. 1973, 95, 7961.
(c) Schmalz, T. G.; Gierke, T. D.; Beak, P.; Flygare, W. H. Tetrahedron Lett. 1974, 33, 2885.
(d) Palmer, M. H.; Findlay, R. H. Tetrahedron Lett. 1974, 33, 253.
(e) Sutter, D. H.; Flygare, W. H. Top. Curr. Chem. 1976, 63, 89.
[19] Thorn, D. L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39.
[20] (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193.
(b) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR, Basic Principles and Progress, Vol. 23, Springer Verlag, Berlin, 1990, p. 165.
[21] Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 14, 811.
[22] Schleyer, P. v. R.; Maerker, C; Dransfeld, A. Jiao, H. J. Am. Chem. Soc. 1996, 118, 6317.
[23] Wallenborn, E.-U.; Haldimann, R. F.; Klarner, F.-G.; Diederich, F. Chem. Eur. J. 1998, 4, 2258.
[24] Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 42, 5954.
[25] Ajami, D.; Oeckler, O.; Simon&Amp, A.; Herges, R. Nature 2003, 426, 819.
[26] Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.
[27] Zhang, Y.; Wei, J.; Chi, Y,; Zhang, X.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5039.
[28] Krygowski, T. M.; Cyranski M. K. Chem. Rev. 2001, 101, 1385.
[29] Breslow, R. Chem. Eng. News 1965, 43, 90.
[30] Breslow, R. Acc. Chem. Res. 1973, 6, 393.
[31] Anet, F. A. L.; Bourn, A. J. R.; Lin, Y. S. J. Am. Chem. Soc. 1964, 86, 3576.
[32] Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.
[33] Stock, A.; Pohland, E. Eur J. Inorg. Chem. 1926, 59, 2215.
[34] Wiberg, E. Naturwissenschaften 1948, 35, 182.
[35] Dixon, W. T. Tetrahedron 1962, 18, 875.
[36] Avram, M.; Marica, E.; Nenitzescu, C. D. Eur. J. Inorg. Chem. 1959, 92, 1088.
[37] Hirsch, A. The Chemistry of Fullerenes. Thieme, Stuttgart, 1994.
[38] Taylor, R. C. R. Chim. 2006, 9, 982.
[39] Rubin, Y. In Fullerenes and Related Structures, Ed.:Hirsch, A., Springer, Berlin & Heidelberg, 1999, 199, p. 67.
[40] Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962, 84, 274.
[41] Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. J. Am. Chem. Soc. 1962, 84, 4307.
[42] Karplus, M. J. Chem. Phys. 1960, 33, 1842.
[43] Nowakowski, J. Theor. Chim. Acta 1968, 10, 79.
[44] Nyulászi, L. Chem. Rev. 2001, 101, 1229.
[45] Randic, M. Chem. Rev. 2003, 103, 3449.
[46] Lee, V. Y.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 6596.
[47] Boldyrev, A. I.; Wang, L. S. Chem. Rev. 2005, 105, 3716.
[48] Rzepa, H. S. Chem. Rev. 2005, 105, 3697.
[49] Borden, W. T. Modern Molecular Orbital Theory for Organic Chemists, Prentice Hall, Englewood Cliffs, NJ, 1975.
[50] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
[51] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[52] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
[53] Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
[54] Hirsch, A.; Chen, Z.; Jiao, H. Angew. Chem., Int. Ed. 2000, 39, 3915.
[55] Mauksch, M.; Tsogoeva, S. B. Chem.-Eur. J. 2010, 16, 7843.
[56] Bleeke, J. R. Chem. Rev. 2001, 101, 1205.
[57] Pauling, L.; Sherman, J. J. Chem. Phys. 1933, 1, 606.
[58] Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity, Electronic and Structural Aspects, J. Wiley, New York, 1994.
[59] George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theor. Chim. Acta 1975, 38, 121.
[60] Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796.
[61] Gordon, M. S. Modern Electronic Structure Theory, Part I, World Scientific, Singapore, 1995.
[62] Schleyer, P. V. R.; Pühlhofer, F. Org. Lett. 2002, 4, 2873.
[63] Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A.; Schaad, L. J.; Schleyer, P. V. R. Org. Lett. 2003, 5, 2983.
[64] Suresh, C. H.; Koga, N. Chem. Phys. Lett. 2006, 419, 550.
[65] Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Org. Lett. 2006, 8, 863.
[66] Islas, R.; Martinez-Guajardo, G.; Jemenez-Halla, J. O. C.; Sola, M; Merino, G. J. Chem. Theory Comput. 2010, 6, 1131.
[67] Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214.
[68] Geuenich, D.; Hess. K.; Köhler, F.; Herges, R. Chem. Rev. 2005, 105, 3758.
[69] Steiner, E.; Fowler, P. W. Int. J. Quantum Chem. 1996, 60, 609.
[70] Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 13, 3839.
[71] Andrzejak, M.; Kubisiak, P. Struct. Chem. 2013, 24, 1171.
[72] Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
[73] Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem., Int. Ed. 1997, 36, 1808.
[74] Santos, J. C.; Tiznado, W.; Contreras, R.; Fuentealba, P. J. Chem. Phys. 2004, 120, 1670.
[75] Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207.
[76] Juse, J.; Sundholm, D. Phys. Chem. Chem. Phys. 1999, 1, 3429.
[77] Bird, C. W. Tetrahedron 1985, 41, 1409.
[78] Kotelevskii, S. I.; Prezhdo, O. V. Tetrahedron 2001, 57, 5715.
[79] Cyrański, M. K. Chem. Rev. 2005, 105, 3773.
[80] Aihara, J. I. J. Am. Chem. Soc. 2006, 128, 2873.
[81] Aihara, J.; Kanno, H.; Ishida, T. J. Phys. Chem. A 2007, 111, 8873.
[82] Giambiagi, M.; de Giambiagi, M. S.; dos Santos Silva, C. D., de Figueiredo, A. P. Phys. Chem. Chem. Phys. 2000, 2, 3381.
[83] Ponec, R.; Bultinck, P.; Saliner, A. G. J. Phys. Chem. A 2005, 109, 6606.
[84] Piermarini, G. J.; Mighell, A. D.; Weir, C. E.; Block, S. Science 1969, 165, 1250.
[85] Abrahams, S. C.; Robertson, J. M.; White, J. G. Acta Crystallogr. 1949, 2, 233.
[86] Mason, R. Acta Crystallogr. 1964, 17, 547.
[87] Petrícek, V.; Císarová, I.; Hummel, L.; Kroupa, J.; Brezina, B. Acta Crystallogr., Sect. B:Struct. Sci. 1990, 46, 830.
[88] Frampton, C. S.; Knight, K. S.; Shankland, N.; Shankland, K. J. Mol. Struct. 2000, 520, 29.
[89] Sondheimer, F.; Wolovsky, R. J. Am. Chem. Soc. 1962, 84, 260.
[90] Spitler, E. L.; Johnson Ⅱ, C. A.; Haley, M. M. Chem. Rev. 2006, 106, 5344.
[91] Herges, R. Chem. Rev. 2006, 106, 4820.
[92] Willstatter, R.; Waser, E. Eur. J. Inorg. Chem. 1911, 44, 3423.
[93] Masamune, S.; Seidner, R. T. J. Chem. Soc. D:Chem. Commun. 1969, 542.
[94] Yavari, I.; Norouzi-Arasi, H. J. Mol. Struct.:THEOCHEM 2002, 593, 199.
[95] Oth, J. F. M.; Rottele, H.; Schroder, G. Tetrahedron Lett. 1970, 11, 61.
[96] Wiberg, K. B. Chem. Rev. 2001, 101, 1317.
[97] Allinger, N. L.; Sprague, J. T. J. Am. Chem. Soc. 1973, 95, 3893.
[98] Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P. J. Am. Chem. Soc. 2005, 127, 9704.
[99] Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1960, 82, 5765.
[100] (a) Oth, J. F. M. Pure Appl. Chem. 1971, 25, 573.
(b) Jug, K.; Fasold, E. J. Am. Chem. Soc. 1987, 109, 2263.
(c) Baumann, H.; Oth, J. F. M. Helv. Chim. Acta 1995, 78, 679.
(d) Choi, C. H.; Kertesz, M. J. Am. Chem. Soc. 1997, 119, 11994.
(e) Baumann, H.; Bunzli, J. J. Chem. Soc., Faraday Trans. 1998, 94, 2695.
(f) Oda, M.; Sakamoto, Y.; Kajioka, T.; Uchiyama, T.; Miyatake, R.; Kuroda, S. Angew. Chem., Int. Ed. 2001, 40, 2660.
(g) Vogel, E.; Engels, H.; Huber, W.; Lex, J.; Mullen, K. J. Am. Chem. Soc. 1982, 104, 3729.
[101] Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1961, 83, 4863.
[102] (a) Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. J. Chem. Soc., Perkin Trans. 2 2000, 0, 1415.
(b) Oth, J. F. M.; Gilles, J.-M. Tetrahedron Lett. 1968, 6259.
(c) Johnson, S. M.; Paul, I. C.; King, G. S. D. J. Chem. Soc. (B) 1970, 643.
[103] Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. V. R. Org. Lett. 2002, 4, 3431.
[104] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.
[105] Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962 84, 274.
[106] Longuet-Higgins, H. C.; Salem, L. Proc. R. Soc. London, Ser. A 1959, 251, 172.
[107] Yoshizawa, K.; Kato, T.; Yamabe, T. J. Phys. Chem. 1996, 100, 5697.
[108] Mislow, K. J. Chem. Phys. 1952, 20, 1489.
[109] Coulson, C. A.; Golebiewski, A. Tetrahedron 1960, 11, 125.
[110] Bregman, J. Hirshfeld, F. L. Rabinovich, D. Schmidt, G. M. J. Acta Crystallogr. 1965, 19, 227.
[111] Stevenson, C. D.; Kurth, T. L. J. Am. Chem. Soc. 2000, 122, 722.
[112] Reetz, M. T.; Hütte, S.; Goddard, R. Z. Naturforsch., B:J. Chem. Sci. 1995, 50, 415.
[113] Gould, E. S. Acta Crystallogr. 1955, 8, 657.
[114] Robertson, J. M.; Shearer, H. M. M.; Sim, G. A.; Watson, D. G. Acta Crystallogr. 1962, 15, 1.
[115] Pople, J. A. Mol. Phys. 1958, 1, 175.
[116] Pozharskii, A. F. Chem. Heterocycl. Com. 1985, 21, 717.
[117] (a) Bird, C. W. Tetrahedron 1992, 48, 335.
(b) Bird, C. W. Tetrahedron 1990, 46, 5697.
[118] Alkorta, I; Elguero, J. Struct. Chem. 2003, 14, 377.
[119] Winstein, S. J. Am. Chem. Soc. 1959, 81, 6524.
[120] Doering, W. v. E.; Laber, G.; Vonderwahl, R.; Chamberlain, N. F.; Williams, R. B. J. Am. Chem. Soc. 1956, 78, 5448.
[121] Williams, R. V. Chem. Rev. 2001, 101, 1185.
[122] Zhang, S.; Wei, J.; Zhan, M.; Luo, Q.; Wang, C.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2012, 134, 11964.
[123] Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.
[124] Jiao, H.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 1993, 32, 1763.
[125] Jiao, H.; Schleyer, P. v. R. J. Chem. Soc., Perkin Trans. 2 1994, 407.
[126] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.
[127] Kawase, T.; Oda, M. Angew. Chem., Int. Ed. 2004, 43, 4396.
[128] Dewar, M. J. S. Bull. Soc. Chim. Belg. 1979, 88, 957.
[129] Baeyer, A. Chem. Ber. 1885, 18, 2269.
[130] Schleyer, P. V. R. In Substituent Effects in Radical Chemistry, Eds.:Viehe, H. G.; Janousek, Z.; Merenyi, R., Reidel, Dordrecht, 1986, pp. 69~81.
[131] Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279.
[132] Wu, W.; Ma, B.; Schleyer, P. v. R.; Mo, Y. Chem. Eur. J. 2009, 15, 9730.
[133] Havenith, R. W. A.; De Proft, F.; Fowler, P. W. Geerlings, P. Chem. Phys. Lett. 2005, 407, 391.
[134] Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 3102.
[135] Gund, P. J. Chem. Edu. 1972, 49, 100.
[136] Zhai, H. J.; Averkiev, B. B.; Zubarev, D. Y.; Wang, L. S.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2007, 46, 4277.
[137] Schleyer, P. V. R.; Wu, J. I.; Cossío, F. P.; Fernández, I. Chem. Soc. Rev. 2014, 43, 4909.
[138] Rzepa, H. S.; Taylor, K. R. J. Chem. Soc., Perkin Trans. 2 2002, 1499.
[139] Sommerfeld, T. J. Am. Chem. Soc. 2002, 124, 1119.
[140] Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 24, 1753.
/
〈 |
|
〉 |