综述与进展

芳香性:历史与发展

  • 华煜晖 ,
  • 张弘 ,
  • 夏海平
展开
  • a 厦门大学能源材料化学协同创新中心 厦门 361005;
    b 厦门大学化学化工学院 厦门 361005

收稿日期: 2017-09-08

  修回日期: 2017-09-29

  网络出版日期: 2017-10-11

基金资助

国家自然科学基金(Nos.21390400,21672217,21521002)资助项目.

History and Development

  • Hua Yuhui ,
  • Zhang Hong ,
  • Xia Haiping
Expand
  • a Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005;
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2017-09-08

  Revised date: 2017-09-29

  Online published: 2017-10-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21672217, 21521002).

摘要

芳香性是有机化学领域的重要概念,芳香性化合物通常具有特殊的稳定性.探究分子的芳香性不仅可以帮助我们更好地理解其稳定的本质,还可以预测和构建稳定或去稳定的分子骨架.开展芳香性研究,必须从芳香性的内涵与判定方法入手.主要介绍芳香性的起源、定义、相关的理论和实验判据,并将芳香性加以分类,以实例进一步分析芳香性的研究方法和研究内容.

本文引用格式

华煜晖 , 张弘 , 夏海平 . 芳香性:历史与发展[J]. 有机化学, 2018 , 38(1) : 11 -28 . DOI: 10.6023/cjoc201709009

Abstract

Aromaticity is one of the most fundamental concept in organic chemistry. Aromatic compounds generally present special thermodynamic stability. Research on aromaticity can help us to understand the stability essence of aromatic compounds, and thus enables the further prediction and construction of species with stabilization or destablization. The endless richness of aromaticity researches usually originates the nature and criterion of aromaticity. The main emphasis of this review is on a discussion of historical discoveries, definitions and classification of aromaticity-related structural types, as well as various theoretically and experimentally criterions. Furthermore, this review contains the recent development of aromaticity illustrated by recent representative examples.

参考文献

[1] Faraday, M. Philos. Trans. R. Soc. London 1825, 115, 440.
[2] Schleyer, P. v. R. Pure Appl. Chem. 1996, 68, 209.
[3] Feng, J. K. J. Mol. Sci. 2005, 21, 1(in Chinese).(封继康, 分子科学学报, 2005, 21, 1.)
[4] Lloyd, D. J. Chem. Inf. Comput. Sci. 1996, 36, 442.
[5] (a) Kekulé, A. Bull. Soc. Chim. Paris 1865, 3, 98.
(b) Kekulé, A. Ann. 1866, 137, 129.
(c) Kekulé, A. Ann. 1872, 162, 77.
[6] Erlenmeyer, E. Ann. 1866, 137, 327.
[7] Pascal, P. Ann. Chim. Phys. 1910, 19, 5.
[8] Armit, J. W.; Robinson, R. J. Chem. Soc. 1925, 127, 1604.
[9] Hückel, E. Z. Phys. 1931, 70, 204.
[10] Pauling, L. J. Chem. Phys. 1936, 4, 673.
[11] Wheland, G. W. Resonance in Organic Chemistry, Wiley, New York, 1955.
[12] London, F. J. Phys. Radium 1937, 8, 397.
[13] Pople, J. A. J. Chem. Phys. 1956, 24, 1111.
[14] Craig, D. P. Nature 1958, 181, 1052.
[15] Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923.
[16] Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 685.
[17] (a) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811.
(b) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991.
(c) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. In Non-Benzenoid Aromatics, Ed.:Snyder, J. P., Vol. 2, Academic Press, New York, 1971.
[18] (a) Benson, R. C.; Flygare, W. H. J. Am. Chem Soc. 1970, 92, 7523.
(b) Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem Soc. 1973, 95, 7961.
(c) Schmalz, T. G.; Gierke, T. D.; Beak, P.; Flygare, W. H. Tetrahedron Lett. 1974, 33, 2885.
(d) Palmer, M. H.; Findlay, R. H. Tetrahedron Lett. 1974, 33, 253.
(e) Sutter, D. H.; Flygare, W. H. Top. Curr. Chem. 1976, 63, 89.
[19] Thorn, D. L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39.
[20] (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193.
(b) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR, Basic Principles and Progress, Vol. 23, Springer Verlag, Berlin, 1990, p. 165.
[21] Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 14, 811.
[22] Schleyer, P. v. R.; Maerker, C; Dransfeld, A. Jiao, H. J. Am. Chem. Soc. 1996, 118, 6317.
[23] Wallenborn, E.-U.; Haldimann, R. F.; Klarner, F.-G.; Diederich, F. Chem. Eur. J. 1998, 4, 2258.
[24] Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 42, 5954.
[25] Ajami, D.; Oeckler, O.; Simon&Amp, A.; Herges, R. Nature 2003, 426, 819.
[26] Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.
[27] Zhang, Y.; Wei, J.; Chi, Y,; Zhang, X.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5039.
[28] Krygowski, T. M.; Cyranski M. K. Chem. Rev. 2001, 101, 1385.
[29] Breslow, R. Chem. Eng. News 1965, 43, 90.
[30] Breslow, R. Acc. Chem. Res. 1973, 6, 393.
[31] Anet, F. A. L.; Bourn, A. J. R.; Lin, Y. S. J. Am. Chem. Soc. 1964, 86, 3576.
[32] Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.
[33] Stock, A.; Pohland, E. Eur J. Inorg. Chem. 1926, 59, 2215.
[34] Wiberg, E. Naturwissenschaften 1948, 35, 182.
[35] Dixon, W. T. Tetrahedron 1962, 18, 875.
[36] Avram, M.; Marica, E.; Nenitzescu, C. D. Eur. J. Inorg. Chem. 1959, 92, 1088.
[37] Hirsch, A. The Chemistry of Fullerenes. Thieme, Stuttgart, 1994.
[38] Taylor, R. C. R. Chim. 2006, 9, 982.
[39] Rubin, Y. In Fullerenes and Related Structures, Ed.:Hirsch, A., Springer, Berlin & Heidelberg, 1999, 199, p. 67.
[40] Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962, 84, 274.
[41] Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. J. Am. Chem. Soc. 1962, 84, 4307.
[42] Karplus, M. J. Chem. Phys. 1960, 33, 1842.
[43] Nowakowski, J. Theor. Chim. Acta 1968, 10, 79.
[44] Nyulászi, L. Chem. Rev. 2001, 101, 1229.
[45] Randic, M. Chem. Rev. 2003, 103, 3449.
[46] Lee, V. Y.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 6596.
[47] Boldyrev, A. I.; Wang, L. S. Chem. Rev. 2005, 105, 3716.
[48] Rzepa, H. S. Chem. Rev. 2005, 105, 3697.
[49] Borden, W. T. Modern Molecular Orbital Theory for Organic Chemists, Prentice Hall, Englewood Cliffs, NJ, 1975.
[50] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
[51] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[52] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
[53] Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
[54] Hirsch, A.; Chen, Z.; Jiao, H. Angew. Chem., Int. Ed. 2000, 39, 3915.
[55] Mauksch, M.; Tsogoeva, S. B. Chem.-Eur. J. 2010, 16, 7843.
[56] Bleeke, J. R. Chem. Rev. 2001, 101, 1205.
[57] Pauling, L.; Sherman, J. J. Chem. Phys. 1933, 1, 606.
[58] Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity, Electronic and Structural Aspects, J. Wiley, New York, 1994.
[59] George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theor. Chim. Acta 1975, 38, 121.
[60] Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796.
[61] Gordon, M. S. Modern Electronic Structure Theory, Part I, World Scientific, Singapore, 1995.
[62] Schleyer, P. V. R.; Pühlhofer, F. Org. Lett. 2002, 4, 2873.
[63] Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A.; Schaad, L. J.; Schleyer, P. V. R. Org. Lett. 2003, 5, 2983.
[64] Suresh, C. H.; Koga, N. Chem. Phys. Lett. 2006, 419, 550.
[65] Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Org. Lett. 2006, 8, 863.
[66] Islas, R.; Martinez-Guajardo, G.; Jemenez-Halla, J. O. C.; Sola, M; Merino, G. J. Chem. Theory Comput. 2010, 6, 1131.
[67] Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214.
[68] Geuenich, D.; Hess. K.; Köhler, F.; Herges, R. Chem. Rev. 2005, 105, 3758.
[69] Steiner, E.; Fowler, P. W. Int. J. Quantum Chem. 1996, 60, 609.
[70] Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 13, 3839.
[71] Andrzejak, M.; Kubisiak, P. Struct. Chem. 2013, 24, 1171.
[72] Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
[73] Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem., Int. Ed. 1997, 36, 1808.
[74] Santos, J. C.; Tiznado, W.; Contreras, R.; Fuentealba, P. J. Chem. Phys. 2004, 120, 1670.
[75] Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207.
[76] Juse, J.; Sundholm, D. Phys. Chem. Chem. Phys. 1999, 1, 3429.
[77] Bird, C. W. Tetrahedron 1985, 41, 1409.
[78] Kotelevskii, S. I.; Prezhdo, O. V. Tetrahedron 2001, 57, 5715.
[79] Cyrański, M. K. Chem. Rev. 2005, 105, 3773.
[80] Aihara, J. I. J. Am. Chem. Soc. 2006, 128, 2873.
[81] Aihara, J.; Kanno, H.; Ishida, T. J. Phys. Chem. A 2007, 111, 8873.
[82] Giambiagi, M.; de Giambiagi, M. S.; dos Santos Silva, C. D., de Figueiredo, A. P. Phys. Chem. Chem. Phys. 2000, 2, 3381.
[83] Ponec, R.; Bultinck, P.; Saliner, A. G. J. Phys. Chem. A 2005, 109, 6606.
[84] Piermarini, G. J.; Mighell, A. D.; Weir, C. E.; Block, S. Science 1969, 165, 1250.
[85] Abrahams, S. C.; Robertson, J. M.; White, J. G. Acta Crystallogr. 1949, 2, 233.
[86] Mason, R. Acta Crystallogr. 1964, 17, 547.
[87] Petrícek, V.; Císarová, I.; Hummel, L.; Kroupa, J.; Brezina, B. Acta Crystallogr., Sect. B:Struct. Sci. 1990, 46, 830.
[88] Frampton, C. S.; Knight, K. S.; Shankland, N.; Shankland, K. J. Mol. Struct. 2000, 520, 29.
[89] Sondheimer, F.; Wolovsky, R. J. Am. Chem. Soc. 1962, 84, 260.
[90] Spitler, E. L.; Johnson Ⅱ, C. A.; Haley, M. M. Chem. Rev. 2006, 106, 5344.
[91] Herges, R. Chem. Rev. 2006, 106, 4820.
[92] Willstatter, R.; Waser, E. Eur. J. Inorg. Chem. 1911, 44, 3423.
[93] Masamune, S.; Seidner, R. T. J. Chem. Soc. D:Chem. Commun. 1969, 542.
[94] Yavari, I.; Norouzi-Arasi, H. J. Mol. Struct.:THEOCHEM 2002, 593, 199.
[95] Oth, J. F. M.; Rottele, H.; Schroder, G. Tetrahedron Lett. 1970, 11, 61.
[96] Wiberg, K. B. Chem. Rev. 2001, 101, 1317.
[97] Allinger, N. L.; Sprague, J. T. J. Am. Chem. Soc. 1973, 95, 3893.
[98] Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P. J. Am. Chem. Soc. 2005, 127, 9704.
[99] Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1960, 82, 5765.
[100] (a) Oth, J. F. M. Pure Appl. Chem. 1971, 25, 573.
(b) Jug, K.; Fasold, E. J. Am. Chem. Soc. 1987, 109, 2263.
(c) Baumann, H.; Oth, J. F. M. Helv. Chim. Acta 1995, 78, 679.
(d) Choi, C. H.; Kertesz, M. J. Am. Chem. Soc. 1997, 119, 11994.
(e) Baumann, H.; Bunzli, J. J. Chem. Soc., Faraday Trans. 1998, 94, 2695.
(f) Oda, M.; Sakamoto, Y.; Kajioka, T.; Uchiyama, T.; Miyatake, R.; Kuroda, S. Angew. Chem., Int. Ed. 2001, 40, 2660.
(g) Vogel, E.; Engels, H.; Huber, W.; Lex, J.; Mullen, K. J. Am. Chem. Soc. 1982, 104, 3729.
[101] Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1961, 83, 4863.
[102] (a) Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. J. Chem. Soc., Perkin Trans. 2 2000, 0, 1415.
(b) Oth, J. F. M.; Gilles, J.-M. Tetrahedron Lett. 1968, 6259.
(c) Johnson, S. M.; Paul, I. C.; King, G. S. D. J. Chem. Soc. (B) 1970, 643.
[103] Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. V. R. Org. Lett. 2002, 4, 3431.
[104] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.
[105] Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962 84, 274.
[106] Longuet-Higgins, H. C.; Salem, L. Proc. R. Soc. London, Ser. A 1959, 251, 172.
[107] Yoshizawa, K.; Kato, T.; Yamabe, T. J. Phys. Chem. 1996, 100, 5697.
[108] Mislow, K. J. Chem. Phys. 1952, 20, 1489.
[109] Coulson, C. A.; Golebiewski, A. Tetrahedron 1960, 11, 125.
[110] Bregman, J. Hirshfeld, F. L. Rabinovich, D. Schmidt, G. M. J. Acta Crystallogr. 1965, 19, 227.
[111] Stevenson, C. D.; Kurth, T. L. J. Am. Chem. Soc. 2000, 122, 722.
[112] Reetz, M. T.; Hütte, S.; Goddard, R. Z. Naturforsch., B:J. Chem. Sci. 1995, 50, 415.
[113] Gould, E. S. Acta Crystallogr. 1955, 8, 657.
[114] Robertson, J. M.; Shearer, H. M. M.; Sim, G. A.; Watson, D. G. Acta Crystallogr. 1962, 15, 1.
[115] Pople, J. A. Mol. Phys. 1958, 1, 175.
[116] Pozharskii, A. F. Chem. Heterocycl. Com. 1985, 21, 717.
[117] (a) Bird, C. W. Tetrahedron 1992, 48, 335.
(b) Bird, C. W. Tetrahedron 1990, 46, 5697.
[118] Alkorta, I; Elguero, J. Struct. Chem. 2003, 14, 377.
[119] Winstein, S. J. Am. Chem. Soc. 1959, 81, 6524.
[120] Doering, W. v. E.; Laber, G.; Vonderwahl, R.; Chamberlain, N. F.; Williams, R. B. J. Am. Chem. Soc. 1956, 78, 5448.
[121] Williams, R. V. Chem. Rev. 2001, 101, 1185.
[122] Zhang, S.; Wei, J.; Zhan, M.; Luo, Q.; Wang, C.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2012, 134, 11964.
[123] Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.
[124] Jiao, H.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 1993, 32, 1763.
[125] Jiao, H.; Schleyer, P. v. R. J. Chem. Soc., Perkin Trans. 2 1994, 407.
[126] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.
[127] Kawase, T.; Oda, M. Angew. Chem., Int. Ed. 2004, 43, 4396.
[128] Dewar, M. J. S. Bull. Soc. Chim. Belg. 1979, 88, 957.
[129] Baeyer, A. Chem. Ber. 1885, 18, 2269.
[130] Schleyer, P. V. R. In Substituent Effects in Radical Chemistry, Eds.:Viehe, H. G.; Janousek, Z.; Merenyi, R., Reidel, Dordrecht, 1986, pp. 69~81.
[131] Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279.
[132] Wu, W.; Ma, B.; Schleyer, P. v. R.; Mo, Y. Chem. Eur. J. 2009, 15, 9730.
[133] Havenith, R. W. A.; De Proft, F.; Fowler, P. W. Geerlings, P. Chem. Phys. Lett. 2005, 407, 391.
[134] Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 3102.
[135] Gund, P. J. Chem. Edu. 1972, 49, 100.
[136] Zhai, H. J.; Averkiev, B. B.; Zubarev, D. Y.; Wang, L. S.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2007, 46, 4277.
[137] Schleyer, P. V. R.; Wu, J. I.; Cossío, F. P.; Fernández, I. Chem. Soc. Rev. 2014, 43, 4909.
[138] Rzepa, H. S.; Taylor, K. R. J. Chem. Soc., Perkin Trans. 2 2002, 1499.
[139] Sommerfeld, T. J. Am. Chem. Soc. 2002, 124, 1119.
[140] Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 24, 1753.

文章导航

/