基于导向策略的C—H键活化反应的研究进展
收稿日期: 2017-08-26
修回日期: 2017-09-21
网络出版日期: 2017-10-24
基金资助
国家自然科学基金(Nos.21774029,21304032)和湖北省自然科学基金(Nos.2016CFB104,2015CFC772)资助项目.
Recent Advances in Directing Group-Induced C-H Activation Reactions
Received date: 2017-08-26
Revised date: 2017-09-21
Online published: 2017-10-24
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21774029, 21304032) and the Natural Science Foundation of Hubei Province (Nos. 2016CFB104, 2015CFC772).
C—H键是有机化合物中存在最广泛的化学键之一.过渡金属催化的C—H键活化反应具有反应效率高、原子经济性高、产生废物少等优点,因此发展新的C—H键的转化类型和方法十分重要.由于分子内经常存在高度稳定且活性相似的C—H键,所以导致传统的C—H键活化反应的区域选择性很差,难以真正被应用于天然产物或者药物分子等的合成中.向反应体系中引入导向基团后,不仅可以大大提高C—H键官能化反应的活性,更可以提高区域选择性,实现高效合成单一目标产物的目的.因此,探索导向基导向的C—H键直接官能化反应具有重要意义.将从不同导向原子的角度介绍近十年导向基辅助的C—H键活化反应,并对其作用机理进行相关阐述.
汪珊 , 严沣 , 汪连生 , 朱磊 . 基于导向策略的C—H键活化反应的研究进展[J]. 有机化学, 2018 , 38(2) : 291 -303 . DOI: 10.6023/cjoc201708055
C-H bonds are widely existed in almost all the organic compounds. Transition-metal-catalyzed C-H functionalizations usually have high reaction efficiency and high atom-economy. However, traditional strategies based on such transition-metal catalyzed C-H activations generally result in poor selectivities, because C-H bonds in one molecule facilely display similar reactivity. It is difficult to be utilized in preparation of natural products, pharmaceuticals and biomolecules. However, directing group can induce the metal to activate proximal C-H bonds via cyclometallated intermediates, improve the regioselectivity of the transformations. Therefore, it is extremely significant to deveplop auxiliary-induced C-H bonds activations. The research progress of directing group-induced C-H activation reactions and mechanisms for recent ten years are sumarized.
Key words: C-H activation; regioselectivity; directing group; transition-metal
[1] Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[2] Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
[3] Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
[4] Moritanl, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119.
[5] Bergman, R. G. Nature 2007, 446, 391.
[6] Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
[7] Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740.
[8] Duan, S.; Xu, Y.; Zhang, X.; Fan, X. Chem. Commun. 2016, 52, 10529.
[9] Lu, Y.; Wang, D. -H.; Engle, K. M.; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 5916.
[10] Wang, X.; Lu, Y.; Dai, H. -X.; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 12203.
[11] Huang, C.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 12406.
[12] Mei, T. -S.; Giri, R.; Maugel, N.; Yu, J. -Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
[13] Giri, R.; Maugel, N.; Li, J. -J.; Wang, D. -H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. -Q. J. Am. Chem. Soc. 2007, 129, 3510.
[14] Wang, D. -H.; Engle, K. M.; Yu, B. -F.; Yu, J. -Q. Science 2010, 327, 315.
[15] Giri, R.; Lam, J. K.; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 686.
[16] Xiao, B.; Fu, Y.; Xu, J.; Gong, T. -J.; Dai, J. -J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
[17] Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463.
[18] Xiao, B.; Gong, T. -J.; Xu, J.; Liu, Z. -J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.
[19] Santhoshkumar, R.; Mannathan, S.; Cheng, C. -H. J. Am. Chem. Soc. 2015, 137, 16116.
[20] Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
[21] Chen, X.; Hao, X. -S.; Goodhue, C. E.; Yu, J. -Q. J. Am. Chem. Soc. 2006, 128, 6790.
[22] Pan, F.; Lei, Z.; Wang, H.; Li, H.; Sun, J.; Shi, Z. -J. Angew. Chem., Int. Ed. 2013, 52, 2063.
[23] Wang, S.; Hou, J. -T.; Feng, M. -L.; Zhang, X. -Z.; Chen, S. -Y.; Yu, X. -Q. Chem. Commun. 2016, 52, 2709.
[24] Wang, Z.; Tian, Q.; Yu, X.; Kuang, C. Adv. Synth. Catal. 2014, 5, 961.
[25] Gong, B.; Shi, J.; Wang, X.; Yan, Y.; Li, Q.; Meng, Y.; Xu, H. E.; Yi, W. Adv. Synth. Catal. 2014, 356, 137.
[26] Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
[27] Feng, Y.; Chen, G. Angew. Chem., Int. Ed. 2010, 49, 958.
[28] Gutekunst, W. R.; Gianatassio, R.; Baran, P. S. Angew. Chem., Int. Ed. 2012, 51, 7507.
[29] Aihara,Y.; Chatani, N. Chem. Sci. 2013, 4, 664.
[30] Rouqueta, G.; Chatani, N. Chem. Sci. 2013, 4, 2201.
[31] Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
[32] Wang, S.; Guo, R.; Wang, G.; Chen, S. -Y.; Yu, X. -Q. Chem. Commun. 2014, 50, 12718.
[33] Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2014, 136, 646.
[34] Ilies, L.; Ichikawa, S.; Asako, S.; Matsubara, T.; Nakamura. E. Adv. Synth. Catal. 2015, 357, 2175.
[35] Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308.
[36] Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209.
[37] Wu, X.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.; Ge, H. Nat. Commun. 2015, 6, 6462.
[38] Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51, 5278.
[39] Shang, M.; Sun, S. -Z.; Dai, H. -X.; Yu, J. -Q. J. Am. Chem. Soc. 2014, 136, 3354.
[40] Huang, X.; Huang, J.; Du, C.; Zhang, X.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12970.
[41] Zhang, L. -B.; Hao, X. -Q.; Zhang, S. -K.; Liu, Z. -J.; Zheng, X. -X.; Gong, J. -F.; Niu, J. -L.; Song, M. F. Angew. Chem., Int. Ed. 2015, 54, 272.
[42] Lee, P. -S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 17283.
[43] Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 15, 2931.
[44] Hafner, D. -C. A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713.
[45] Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666.
[46] Shao, J.; Chen, W.; Giulianotti, M. A.; Houghten, R. A.; Yu, Y. Org. Lett. 2012, 14, 5452.
[47] Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518.
[48] Tang, R. -Y.; Li, G.; Yu, J. -Q. Nature 2014, 507, 215.
[49] Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J. -Q. J. Am. Chem. Soc. 2013, 135, 18056.
[50] Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
[51] Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51, 5188.
[52] Dai, H. -X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. -Q. J. Am. Chem. Soc. 2011, 133, 7222.
[53] Wang, B.; Shen, C.; Yao, J.; Yin, H.; Zhang, Y. Org. Lett. 2014, 16, 46.
[54] Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11892.
[55] Zhang, H.; Hu, R. -B.; Zhang, X. -Y.; Li, S. -X.; Yang, S. -D. Chem. Commun. 2014, 50, 4686.
[56] Chary, B. C.; Kim, S.; Park, Y.; Kim, J.; Lee, P. H. Org. Lett. 2013, 15, 2692.
[57] Chan, L. Y.; Cheong, L.; Kim, S. Org. Lett. 2013, 15, 2186.
[58] Yang, J.; Fu, T.; Long, Y.; Zhou, X. Chin. J. Org. Chem. 2017, 37, 1111(in Chinese). (杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.)
/
〈 |
|
〉 |