综述与进展

芳基硼酸类化合物合成研究进展

  • 徐玉良 ,
  • 方浩
展开
  • a 山东大学 天然产物化学生物学教育部重点实验室 济南 250012;
    b 山东大学药学院 药物化学研究所 济南 250012

收稿日期: 2017-09-28

  修回日期: 2017-11-11

  网络出版日期: 2017-12-05

基金资助

国家自然科学基金(No.21672127)资助项目.

Research Progress towards Synthesis of Aryl Boronic Acid Compounds

  • Xu Yuliang ,
  • Fang Hao
Expand
  • Ministry of Education), Shandong University, Jinan 250012;
    b Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan 250012

Received date: 2017-09-28

  Revised date: 2017-11-11

  Online published: 2017-12-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672127).

摘要

芳基硼酸(酯)不仅是有机合成中的重要中间体,而且在生物学、医学及材料科学中有着广泛的应用.综述了近年来其合成方法学的研究进展,着重说明钯催化剂在氯代芳杂环及大位阻底物结构中硼基化的应用,并介绍了镍、铜、锌、铁、铑、钴等金属催化剂和非金属催化的芳基硼基化,以及光诱导合成芳基硼酸的反应.

本文引用格式

徐玉良 , 方浩 . 芳基硼酸类化合物合成研究进展[J]. 有机化学, 2018 , 38(4) : 738 -751 . DOI: 10.6023/cjoc201709045

Abstract

Aromatic boronic acids and esters are essential intermediates and have been widely used in biology, medicine and material science. In this paper, the resent progress on their synthesis is summarized, especially Pd-catalyzed borylation of aryl chlorides with steric hindrance substrates, other metal (Ni, Cu, Fe, Zn, Rh, Co)-catalyzed borylation, metal-free borylation, and photoinduced borylation.

参考文献

[1] (a) Lacina, K.; Skladal, P.; James, T. D. Chem. Cent. J. 2014, 8, 60.
(b) Li, D.-J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.
(c) Sun, X.; Zhai, W.; Fossey, J. S.; James, T. D. Chem. Commun. 2016, 52, 3456.
[2] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[3] Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
[4] Murata, M. Heterocycles 2012, 85, 1795.
[5] Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C. P.; Wong, W. T.; Kwong, F. Y. RSC Adv. 2013, 3, 12518.
[6] Kubota, K.; Iwamoto, H.; Ito, H. Org. Biomol. Chem. 2017, 15, 285.
[7] Li, P.; Meng, G.; Chen, K.; Wang, L. Synthesis 2017, 49, 4719.
[8] Yan, G.-B.; Huang, D.-Y.; Wu, X.-M. Adv. Synth. Catal. 2018, 360, 1040.
[9] (a) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
(b) Xu, L.; Wang, G.-H.; Zhang, S.; Wang, H.; Wang, L.-H.; Liu, L.; Jiao, J.; Li, P.-F. Tetrahedron 2017, 73, 7123.
[10] (a)Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1997, 38, 3447.
(b) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458.
(c) Willis, D. M.; Strongin, R. M. Tetrahedron Lett. 2000, 41, 8683.
[11] Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813.
[12] Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 5359.
[13] Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5589.
[14] (a) Molander, G. A.; Trice, S. L.; Dreher, S. D. J. Am. Chem. Soc. 2010, 132, 17701.
(b) Molander, G. A.; Trice, S. L. J.; Kennedy, S. M.; Dreher, S. D.; Tudge, M. T. J. Am. Chem. Soc. 2012, 134, 11667.
[15] Chow, W. K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2012, 77, 3543.
[16] Yamamoto, Y.; Matsubara, H.; Yorimitsu, H.; Osuka, A. ChemCat-Chem 2016, 8, 2317.
[17] Baudoin, O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2000, 65, 9268.
[18] Fang, H.; Kaur, G.; Yan, J.; Wang, B. Tetrahedron Lett. 2005, 46, 1671.
[19] Rodriguez, S.; Qu, B.; Haddad, N.; Reeves, D. C.; Tang, W.-J.; Lee, H.; Krishnamurthy, D.; Senanayake, C. H. Adv. Synth. Catal. 2011, 353, 533.
[20] Kawamorita, S.; Ohmiya, H.; Iwai, T.; Sawamura, M. Angew. Chem., Int. Ed. 2011, 50, 8363.
[21] Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym. Sci. 2000, 76, 1257.
[22] Rosen, B. M.; Huang, C.; Percec, V. Org. Lett. 2008, 10, 2597.
[23] Moldoveanu, C.; Wilson, D. A.; Wilson, C. J.; Corcoran, P.; Rosen, B. M.; Percec, V. Org. Lett. 2009, 11, 4974.
[24] Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766.
[25] Molander, G. A.; Cavalcanti, L. N.; Garcia-Garcia, C. J. Org. Chem. 2013, 78, 6427.
[26] Zhang, H.; Hagihara, S.; Itami, K. Chem.-Eur. J. 2015, 21, 16796.
[27] Hu, J.-F.; Sun, H.-Q.; Cai, W.-S.; Pu, X.-H.; Zhang, Y.-M.; Shi, Z.-Z. J. Org. Chem. 2016, 81, 14.
[28] Liu, X.-W.; Echavarren, J.; Zarate, C.; Martin, R. J. Am. Chem. Soc. 2015, 137, 12470.
[29] Tobisu, M.; Zhao, J.-N.; Kinuta, H.; Furukawa, T.; Igarashi, T.; Chatani, N. Adv. Synth. Catal. 2016, 358, 2417.
[30] Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Angew. Chem., Int. Ed. Engl. 2016, 55, 8718.
[31] Pu, X.-H.; Hu, J.-F.; Zhao, Y.; Shi, Z.-Z. ACS Catal. 2016, 6, 6692.
[32] Guo, L.; Rueping, M. Chem.-Eur. J. 2016, 22, 16787.
[33] Zhu, W.; Ma, D.-W. Org. Lett. 2006, 8, 261.
[34] Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48, 5350.
[35] Yan, G.-B.; Yang, M.-H.; Yu, J. Lett. Org. Chem. 2012, 9, 71.
[36] Yu, H.; Zhang, J.; Wang, X.; Ye, J. Synlett 2012, 23, 1394.
[37] Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 18730.
[38] Bose, S. K.; Marder, T. B. Org. Lett. 2014, 16, 4562.
[39] Bose, S. K.; Deissenberger, A.; Eichhorn, A.; Steel, P. G.; Lin, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2015, 54, 11843.
[40] Qi, X.-X.; Jiang, L.-B.; Zhou, C.; Peng, J.-B.; Wu, X.-F. ChemistryOpen 2017, 6, 345.
[41] Tobisu, M.; Kinuta, H.; Kita, Y.; Remond, E.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 115.
[42] Kinuta, H.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2015, 137, 1593.
[43] Marciasini, L. D.; Richy, N.; Vaultier, M.; Pucheault, M. Adv. Synth. Catal. 2013, 355, 1083.
[44] Bedford, R. B.; Brenner, P. B.; Carter, E.; Gallagher, T.; Murphy, D. M.; Pye, D. R. Organometallics 2014, 33, 5940.
[45] Yoshida, T.; Ilies, L.; Nakamura, E. ACS Catal. 2017, 7, 3199.
[46] Yao, W.-B.; Fang, H.-Q.; Peng, S.-H.; Wen, H.-N.; Zhang, L.; Hu, A.-G.; Huang, Z. Organometallics 2016, 35, 1559.
[47] Komeyama, K.; Kiguchi, S.; Takaki, K. Chem. Commun. 2016, 52, 7009.
[48] Mo, F.-Y.; Jiang, Y.-B.; Qiu, D.; Zhang, Y.; Wang, J.-B. Angew. Chem., Int. Ed. 2010, 49, 1846.
[49] Qiu, D.; Jin, L.; Zheng, Z.-T.; Meng, H.; Mo, F.-Y.; Wang, X.; Zhang, Y.; Wang, J.-B. J. Org. Chem. 2013, 78, 1923.
[50] Zhu, C.; Yamane, M. Org. Lett. 2012, 14, 4560.
[51] Erb, W.; Hellal, A.; Albini, M.; Rouden, J.; Blanchet, J. Chem.-Eur. J. 2014, 20, 6608.
[52] Zhao, C.-J.; Xue, D.; Jia, Z.-H.; Wang, C.; Xiao, J. Synlett 2014, 25, 1577.
[53] Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134, 19997.
[54] Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943.
[55] Uematsu, R.; Yamamoto, E.; Maeda, S.; Ito, H.; Taketsugu, T. J. Am. Chem. Soc. 2015, 137, 4090.
[56] Zhang, J.-M.; Wu, H.-H.; Zhang, J.-L. Eur. J. Org. Chem. 2013, 6263.
[57] Lee, Y.; Baek, S. Y.; Park, J.; Kim, S. T.; Tussupbayev, S.; Kim, J.; Baik, M. H.; Cho, S. H. J. Am. Chem. Soc. 2017, 139, 976.
[58] Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017, 139, 607.
[59] Pucheault, M.; Pinet, S.; Liautard, V.; Debiais, M. Synthesis 2017, 49, 4759.
[60] Miralles, N.; Romero, R. M.; Fernández, E.; Muñiz, K. Chem. Commun. 2015, 51, 14068.
[61] Cheng, W.-M.; Shang, R.; Zhao, B.; Xing, W.-L.; Fu, Y. Org. Lett. 2017, 19, 4291.
[62] Chen, K.; Zhang, S.; He, P.; Li, P.-F. Chem. Sci. 2016, 7, 3676.
[63] Chen, K.; Cheung, M. S.; Lin, Z.-Y.; Li, P.-F. Org. Chem. Front. 2016, 3, 875.
[64] Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. 2016, 138, 2985.
[65] Liu, W.-B.; Yang, X.-B.; Gao, Y.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 8621.
[66] Yu, J.; Zhang, L.; Yan, G.-B. Adv. Synth. Catal. 2012, 354, 2625.
[67] Ahammed, S.; Nandi, S.; Kundu, D.; Ranu, B. C. Tetrahedron Lett. 2016, 57, 1551.
[68] Jiang, M.; Yang, H.-J.; Fu, H. Org. Lett. 2016, 18, 5248.
[69] Teders, M.; Pitzer, L.; Hopkinson, M. N.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 902.
[70] Hu, D.-W.; Wang, L.-H.; Li, P.-F. Org. Lett. 2017, 19, 2770.
[71] Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.
[72] Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.

文章导航

/